p-Adic homology and finite measurement resolution

Discretization in dimension D in terms of pinary cutoff means division of the manifold to cube-like objects. What suggests itself is homology theory defined by the measurement resolution and by the fluxes assigned to the induced Kähler form.

  1. One can introduce the decomposition of n-D sub-manifold of the imbedding space to n-cubes by n-1-planes for which one of the coordinates equals to its pinary cutoff. The construction works in both real and p-adic context. The hyperplanes in turn can be decomposed to n-1-cubes by n-2-planes assuming that an additional coordinate equals to its pinary cutoff. One can continue this decomposition until one obtains only points as those points for which all coordinates are their own pinary cutoffs. In the case of partonic 2-surfaces these points define in a natural manner the ends of braid strands. Braid strands themselves could correspond to the curves for which two coordinates of a light-like 3-surface are their own pinary cutoffs.

  2. The analogy of homology theory defined by the decomposition of the space-time surface to cells of various dimensions is suggestive. In the p-adic context the identification of the boundaries of the regions corresponding to given pinary digits is not possible in purely topological sense since p-adic numbers do not allow well-ordering. One could however identify the boundaries sub-manifolds for which some number of coordinates are equal to their pinary cutoffs or as inverse images of real boundaries. This might allow to formulate homology theory to the p-adic context.

  3. The construction is especially interesting for the partonic 2-surfaces. There is hierarchy in the sense that a square like region with given first values of pinary digits decompose to p square like regions labelled by the value 0,...,p-1 of the next pinary digit. The lines defining the boundaries of the 2-D square like regions with fixed pinary digits in a given resolution correspond to the situation in which either coordinate equals to its pinary cutoff. These lines define naturally edges of a graph having as its nodes the points for which pinary cutoff for both coordinates equals to the actual point.

  4. I have proposed earlier kenociteallb/categorynew what I have called symplectic QFT involving a triangulation of the partonic 2-surface. The fluxes of the induced Kähler form over the triangles of the triangulation and the areas of these triangles define symplectic invariants, which are zero modes in the sense that they do not contribute to the line element of WCW although the WCW metric depends on these zero modes as parameters. The physical interpretation is as non-quantum fluctuating classical variables. The triangulation generalizes in an obvious manner to quadrangulation defined by the pinary digits. This quadrangulation is fixed once internal coordinates and measurement accuracy are fixed. If one can identify physically preferred coordinates - say by requiring that coordinates transform in simple manner under isometries - the quadrangulation is highly unique.

  5. For 3-surfaces one obtains a decomposition to cube like regions bounded by regions consisting of square like regions and Kähler magnetic fluxes over the squares define symplectic invariants. Also Kähler Chern-Simons invariant for the 3-cube defines an interesting almost symplectic invariant. 4-surface decomposes in a similar manner to 4-cube like regions and now instanton density for the 4-cube reducing to Chern-Simons term at the boundaries of the 4-cube defines symplectic invariant. For 4-surfaces symplectic invariants reduce to Chern-Simons terms over 3-cubes so that in this sense one would have holography. The resulting structure brings in mind lattice gauge theory and effective 2-dimensionality suggests that partonic 2-surfaces are enough.

The simplest realization of this homology theory in p-adic context could be induced by canonical identification from real homology. The homology of p-adic object would the homology of its canonical image.

  1. Ordering of the points is essential in homology theory. In p-adic context canonical identification x=∑ xnpn→ ∑ xnp-n map to reals induces this ordering and also boundary operation for p-adic homology can be induced. The points of p-adic space would be represented by n-tuples of sequences of pinary digits for n coordinates. p-Adic numbers decompose to disconnected sets characterized by the norm p-n of points in given set. Canonical identification allows to glue these sets together by inducing real topology. The points pn and (p-1)(1+p+p2+...)pn+1 having p-adic norms p-n and p-n-1 are mapped to the same real point p-n under canonical identification and therefore the points pn and (p-1)(1+p+p2+...)pn+1 can be said to define the endpoints of a continuous interval in the induced topology although they have different p-adic norms. Canonical identification induces real homology to the p-adic realm. This suggests that one should include canonical identification to the boundary operation so that boundary operation would be map from p-adicity to reality.

  2. Interior points of p-adic simplices would be p-adic points not equal to their pinary cutoffs defined by the dropping of the pinary digits corresponding pn, n>N. At the boundaries of simplices at least one coordinate would have vanishing pinary digits for pn, n>N. The analogs of n-1 simplices would be the p-adic points sets for which one of the coordinates would have vanishing pinary digits for pn, n>N. n-k-simplices would correspond to points sets for which k coordinates satisfy this condition. The formal sums and differences of these sets are assumed to make sense and there is natural grading.

  3. Could one identify the end points of braid strands in some natural manner in this cohomology? Points with n≤ N pinary digits are closed elements of the cohomology and homologically equivalent with each other if the canonical image of the p-adic geometric object is connected so that there is no manner to identify the ends of braid strands as some special points unless the zeroth homology is non-trivial. In kenociteallb/agg it was proposed that strand ends correspond to singular points for a covering of sphere or more general Riemann surface. At the singular point the branches of the covering would co-incide.

    The obvious guess is that the singular points are associated with the covering characterized by the value of Planck constant. As a matter fact, the original assumption was that all points of the partonic 2-surface are singular in this sense. It would be however enough to make this assumption for the ends of braid strands only. The orbits of braid strands and string world sheet having braid strands as its boundaries would be the singular loci of the covering.

For background see the chapter Quantum Adeles.