TOPOLOGICAL GEOMETRODYNAMICS Physics as infinite-dimensional spinor geometry

Matti Pitkänen

http://www.helsinki.fi/~matpitka/

matpitka@rock.helsinki.fi

Table of contents

- Generalization of Einstein's geometrization program to infinite-dimensional context.
- Infinite-dimensional geometric existence is highly unique
- Geometrization of fermionic statistics and super symmetries
- <u>Basic objection</u>
- Magic properties of lightcone boundary $\frac{\delta M_{\pm}^4}{2}$
- Lightlike 3-surfaces of H/X⁴ as partons
- Quantum dynamics at parton level
- Superconformal symmetries
- Isometries of the world of classical worlds

Return

How classical dynamics emerges?

Problem

 Path integrals and canonical quantization do not work. Vacuum degeneracy and extreme nonlinearity the basic problems. Perturbation theory fails completely around canonically imbedded M⁴.

Outcome

 Quantum dynamics as classical dynamics for classical spinor fields in the infinite-dimensional "world of classical worlds" consisting of 3surfaces in H= M⁴×CP₂.

To the beginning

Generalization of Einstein's geometrization program to infinite-dimensional context

- The <u>world of classical worlds</u> identified as <u>space CH of 3-surfaces in H</u> the arena of dynamics. Analog of Wheeler's superspace or of loop space.
- 4-D(!) General Coordinate invariance: definition of CH metric must assign to a given 3-surface four-surface as a generalized Bohr orbit.
 Bohr orbitology as part of configuration space geometry.
- Kähler geometry as a manner to geometrize Hermitian conjugation.
 Kähler function defining the metric absolute extremum of Kähler action?
- <u>Complexification of configuration space</u> highly non-trivial problem: <u>effective 2-dimensionality</u>.
- Reference: TGD: Physics as Infinite-Dimensional Geometry.

Infinite-dimensional geometric existence is highly unique

- <u>Existence of Riemann connection</u> forces infinite-dimensional symmetries: generalization of Kac-Moody symmetries of loop spaces (thesis of Dan Freed).
- Configuration space as a union of infinite-dimensional symmetric spaces. Constant curvature spaces. All points metrically equivalent.
- Symmetric spaces in union labelled by zero modes not contributing to the metric. Identifiable as classical observables crucial for quantum measurement theory. Vanishing curvature scalar: Einstein's vacuum equations satisfied from mere finiteness.
- Choice of compact Cartesian factor S of H also uniquely S= Chartesian factor S of H also uniquely S= Chartesian

To the beginning

Geometrization of fermionic statistics and super symmetries

- Gamma matrices of configuration space provide geometrization of fermionic statistics.
- Gamma matrices expressible in terms of fermionic oscillator operators assignable to second quantized free induced spinor fields at spacetime surface. Gamma matrices and isometry algebra combine to form a super algebra. Geometrization of super algebra concept.
- Configuration space spinor fields for which spinor components correspond to Fock states for a given 3-surface define physical states. Modes of classical spinor fields in configuration space define quantum states of the Universe. Universe a single fermion state in infinite-D sense!

To the beginning

Basic objection

- Super-conformal symmetries are crucial element of any TOE.
- Do not generalize to 3-dimensional situation in an obvious manner!
- Resolution of the difficulty: Magic properties of the boundary of 4dimensional light-cone and lightlike 3-surfaces in general.
- Dimension D=4 for space-time and Minkowski factor of imbedding space unique!

Magic properties of lightcone boundary <u>δM</u>⁴₊_

- Lightcone boundary δM_{+}^4 metrically 2-dimensional. Generalized conformal invariance. δM_{+}^4 has infinite-D group of isometries realized as conformal transformations—with radial scaling compensating the conformal factor! Degenerate symplectic and Kähler structures.
- Radial and transversal super-conformal algebras associated with δM_+^4 .
- !Configuration space CH union of configuration spaces associated with $H_{+/-} = M^4_{+/-} \times CP_2$ and labelled by the position for the tip of the lightcone. Connection with cosmology. Poincare invariance not lost. Also preferred CP_2 point as label: quantum measurement theory.
- By 4-D general coordinate invariance the construction of configuration space geometry must reduce to the boundary of M⁴_{+/-}×CP₂ for given CH_b. Diff⁴ degeneracy.
- Non.determinism of Kähler action implies complications. Time would be completely lost without the non-determinism.
- <u>Canonical (symplectic) transformations</u> of δ M⁴×CP₂ act as isometries of CH_b. Generalization of local symmetries.

Lightlike 3-surfaces of H/X⁴ as partons

- Lightlike 3-surfaces X³₁ (analogous to loci of em shock waves)
 metrically 2-dimensional. Identification as parton orbits.
- Transformations respecting light-likeness of X³ as local isometries
 of H are Kac-Moody type symmetries. Also conformal symmetries
 assignable to lightlike direction and transversal degrees of freedom.
- Partonic 2-surfaces defined as intersections $X_1^3 \sum \delta H_+$ of light-like 3-surfaces and lightcone boundaries carry the data about configuration space metric and spinor structure.
- <u>Dynamics in space-time interior corresponds to zero modes</u> of CH metric. Fixed by quantum classical correspondence. Classical observables have same values as commuting quantum observables at partonic 2-surfaces. Geometrization of quantum measurement theory.

Quantum dynamics at parton level To the beginning

- Dynamics of lightlike partonic 3-surface cannot involve metric. Chern-Simons action for induced Kähler gauge potential. Partonic 3-surfaces with at most 2-D CP₂ projection extrema.
- The form of corresponding modified Dirac action dictated completely by the requirement that super-charges exist if Chern-Simons field equations are satisfied.
- Modified Dirac action: replace gamma matrices Γ^{α} by modified gamma matrices

$$\Gamma^{\alpha} = (\sum \sum L/\sum h_{\alpha}^{k})\Gamma^{k}$$

in massless Dirac operator D. Canonical momentum densities contracted with gammas of H. Guarantees conservation of super currents defined by solutions of modified Dirac equation.

Generalized eigenmodes of modified Dirac operator: $D\psi = \lambda t^k \Gamma_k \psi$, t lightlike tangent vector field for X³ or its dual. The product of eigen values defines Dirac determinant defining vacuur Return of the theory. Exponent of Kähler function defined as extremum of Kähler action.

Superconformal symmetries

To the beginning

- N=4 superconformal symmetries in question.
- Super Kac-Moody symmetries (SKM) respecting light-likeness of partonic 3-surface. Noether charges.
- Super Kac-Moody symmetries acting as M⁴ and CP₂ spinor rotations.
- Supercanonical symmetries acting as isometries of CH define Noether charges. Gamma matrices as super-generators.
- Commutators of super-canonical and SKM symmetry algebras define gauge symmetries.
- <u>Super conformal symmetries</u> generated by solutions of the modified Dirac equation satisfying $t^k \Gamma_k \psi = 0$: can be added to the generalized eigen modes of the modified Dirac operator.

- Breaking of superconformal symmetries by almost-TQFT property since the notion of light-likeness involves the notion of induced metric as does also generalized eigenvalue equation for modified Dirac operator D.
- Gravitational momentum as non-conserved Noether charge if Kähler gauge potential contains M⁴ part A_a=constant, where a is lightcone proper time (cosmic time). Mass squared conserved. Inertial 4-momentum as time average of C-S 4-momentum for space-time sheet.

Isometries of the world of classical worlds

- By symmetric space property isometries of configuration space fix completely the metric and Kähler structure. What are the isometries?
- Canonical algebra for $\delta H_+ = \delta M_+^4 \sum_{i} CP_i$ defines isometries of the world of classical worlds.
- Noether charges of the (super) canonical algebra for C-S action define complexified <u>configuration space (super)Hamiltonians</u>.
- Complexification of CH from the conformal structure of partonic 2surface much like in the case of loop spaces.
- Poisson brackets for complexified Hamiltonians inherited from Poisson brackets at level of δH₊ define matrix elements of Kähler form and metric between corresponding Killing vector fie Return

How classical dynamics emerges?

To the beginning

- Definition: <u>Dirac determinant</u> defined as product of eigenvalues of for modified Dirac operator gives vacuum functional.
- Number theoretic finiteness: restrict the eigenvalues to the algebraic extension of rationals used. If the number of eigenvalues finite then vacuum functional algebraic number and p-adicization works also. Infinite hierarchy of physics (cognitive hierarchy).
- Does the Dirac determinant really give absolute extremum of Kähler function for a region of space-time sheet at which Kähler action density has definite sign? Encouraging finding: Absolute extrema of Kähler action possess dynamical variants of local Poincare and color isometries. These charges vanish. Generators in 1-1 correspondence with small deformations of absolute extremum. Kac-Moody symmetries act as zero modes of configuration space metric.
- Quantum classical correspondence: the exponent of Kähler function corresponds to the exponent Kähler action for Bohr orbit like space-time surface for which classical conserved charges correspond to eigenvalues for mutually commuting quantum observables.