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Abstract

Preferred extremal of Kähler action have remained one of the basic poorly defined notions
of TGD. There are pressing motivations for understanding what the attribute “preferred”
really means. Symmetries give a clue to the problem. The conformal invariance of string
models naturally generalizes to 4-D invariance defined by quantum Yangian of quantum affine
algebra (Kac-Moody type algebra) characterized by two complex coordinates and therefore
explaining naturally the effective 2-dimensionality [?]. Preferred extremal property should
rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two
space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD).
A natural looking condition is that the symplectic Noether charges associated with a sub-
algebra of symplectic algebra with conformal weights n-multiples of the weights of the entire
algebra vanish for preferred extremals. These conditions would be classical counterparts the
the condition that super-symplectic sub-algebra annihilates the physical states. This would
give a hierarchy of super-symplectic symmetry breakings and quantum criticalities having
interpretation in terms of hierarchy of Planck constants heff = n×h identified as a hierarchy of
dark matter. n could be interpreted as the number of space-time conformal gauge equivalence
classes for space-time sheets connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean or
imply. The weak form of electric-magnetic duality combined with the assumption that the
contraction of the Kähler current with Kähler gauge potential vanishes for preferred extremals
implies that Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms
at the light-like orbits of wormhole throats at which the signature of the induced metric
changes its signature from Minkowskian to Euclidian. In regions with 4-D CP2 projection
(wormhole contacts) also a 3-D contribution not assignable to the boundary of the region
might be possible. These conditions pose strong physically feasible conditions on extremals
and might be true for preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space of
given point of space-time surface is associative and thus quaternionic. Also the formulation in
terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility.
So called M8 − H duality is a variant of this vision and would mean that one can map
associative/co-associative space-time surfaces from M8 to H and also iterate this mapping from
H to H to generate entire category of preferred extremals. The signature of M4 is a general
technical problem. For instance, the holomorphy in 2 complex variables could correspond to
what I have called Hamilton-Jacobi property. Associativity/co-associativity of the tangent
space makes sense also in Minkowskian signature.

In this chapter various views about preferred extremal property are discussed.

1 Introduction

Preferred extremal of Kähler action have remained one of the basic poorly defined notions of TGD.
There are pressing motivations for understanding what the attribute “preferred” really means.
Symmetries give a clue to the problem. The conformal invariance of string models naturally
generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody
type algebra) characterized by two complex coordinates and therefore explaining naturally the
effective 2-dimensionality [K30]. Preferred extremal property should rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two
space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD). A
natural looking condition is that the symplectic Noether charges associated with a sub-algebra
of symplectic algebra with conformal weights n-multiples of the weights of the entire algebra
vanish for preferred extremals. These conditions would be classical counterparts the condition
that super-symplectic sub-algebra annihilates the physical states. This would give a hierarchy of
super-symplectic symmetry breakings and quantum criticalities having interpretation in terms of
hierarchy of Planck constants heff = n × h identified as a hierarchy of dark matter. n could be
interpreted as the number of space-time conformal gauge equivalence classes for space-time sheets
connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean or imply.
The weak form of electric-magnetic duality combined with the assumption that the contraction
of the Kähler current with Kähler gauge potential vanishes for preferred extremals implies that
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Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms at the light-like
orbits of wormhole throats at which the signature of the induced metric changes its signature from
Minkowskian to Euclidian. In regions with 4-D CP2 projection (wormhole contacts) also a 3-D
contribution not assignable to the boundary of the region might be possible. These conditions pose
strong physically feasible conditions on extremals and might be true for preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space of
given point of space-time surface is associative and thus quaternionic. Also the formulation in
terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility. So
called M8−H duality is a variant of this vision and would mean that one can map associative/co-
associative space-time surfaces from M8 to H and also iterate this mapping from H to H to
generate entire category of preferred extremals. The signature of M4 is a general technical prob-
lem. For instance, the holomorphy in 2 complex variables could correspond to what I have called
Hamilton-Jacobi property. Associativity/co-associativity of the tangent space makes sense also in
Minkowskian signature.

In this chapter various views about preferred extremal property are discussed.

1.1 Preferred Extremals As Critical Extremals

The study of the Kähler-Dirac equation leads to a detailed view about criticality. Quantum
criticality [D2] fixes the values of Kähler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kähler action vanishes for critical deformations
and the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

The discovery that the hierarchy of Planck constants realized in terms of singular covering spaces
of CD × CP2 can be understood in terms of the extremely non-linear dynamics of Kähler action
implying 1-to-many correspondence between canonical momentum densities and time derivatives
of the embedding space coordinates led to a further very concrete understanding of the criticality
at space-time level and its relationship to zero energy ontology [K16].

Criticality is accompanied by conformal invariance and this leads to the proposal that critical
deformations correspond to Kac-Moody type conformal algebra respecting the light-likeness of the
partonic orbits and acting trivially at partonic 2-surfaces. Sub-algebras of conformal algebras with
conformal weights divisible by integer n would act as gauge symmetries and these algebras would
form an inclusion hierarchy defining hierarchy of symmetry breakings. n would also characterize
the value of Planck constant heff = n× h assignable to various phases of dark matter.

1.2 Construction Of Preferred Extremals

There has been considerable progress in the understanding of both preferred extremals and Kähler-
Dirac equation.

1. For preferred extremals the generalization of conformal invariance to 4-D situation is very
attractive idea and leads to concrete conditions formally similar to those encountered in
string model [K6]. In particular, Einstein’s equations with cosmological constant would solve
consistency conditions and field equations would reduce to a purely algebraic statements
analogous to those appearing in equations for minimal surfaces if one assumes that space-
time surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure
(Appendix).

2. The older approach based on basic heuristics for massless equations, on effective 3-dimensionality,
weak form of electric magnetic duality, and Beltrami flows is also promising. An alternative
approach is inspired by number theoretical considerations and identifies space-time surfaces
as associative or co-associative sub-manifolds of octonionic embedding space [K28].

The basic step of progress was the realization that the known extremals of Kähler action -
certainly limiting cases of more general extremals - can be deformed to more general extremals
having interpretation as preferred extremals.
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1. The generalization boils down to the condition that field equations reduce to the condition
that the traces Tr(THk) for the product of energy momentum tensor and second fundamental
form vanish. In string models energy momentum tensor corresponds to metric and one obtains
minimal surface equations. The equations reduce to purely algebraic conditions stating that
T and Hk have no common components. Complex structure of string world sheet makes this
possible.

Stringy conditions for metric stating gzz = gzz = 0 generalize. The condition that field
equations reduce to Tr(THk) = 0 requires that the terms involving Kähler gauge current in
field equations vanish. This is achieved if Einstein’s equations hold true (one can consider
also more general way to satisfy the conditions). The conditions guaranteeing the vanishing
of the trace in turn boil down to the existence of Hermitian structure in the case of Euclidian
signature and to the existence of its analog - Hamilton-Jacobi structure - for Minkowskian
signature (Appendix). These conditions state that certain components of the induced metric
vanish in complex coordinates or Hamilton-Jacobi coordinates.

2. In string model the replacement of the embedding space coordinate variables with quantized
ones allows to interpret the conditions on metric as Virasoro conditions. In the recent case a
generalization of classical Virasoro conditions to four-dimensional ones would be in question.
An interesting question is whether quantization of these conditions could make sense also in
TGD framework at least as a useful trick to deduce information about quantum states in
WCW degrees of freedom.

3. The interpretation of the extended algebra as Yangian [A10] [B9] suggested previously [K30]
to act as a generalization of conformal algebra in TGD Universe is attractive. There is also the
conjecture that preferred extremals could be interpreted as quaternionic of co-quaternionic
4-surface of the octonionic embedding space with octonionic representation of the gamma
matrices defining the notion of tangent space quanternionicity.

2 Weak Form Electric-Magnetic Duality And Its Implica-
tions

The notion of electric-magnetic duality [B4] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric
monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kähler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K12] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.
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2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kähler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kähler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kähler current. Intuitively this picture
is attractive. A more general ansatz would allow several Beltrami flows meaning multi-
hydrodynamics. The integrability conditions boil down to two scalar functions: the first
one satisfies massless d’Alembert equation in the induced metric and the gradients of the
scalar functions are orthogonal. The interpretation in terms of momentum and polarization
directions is natural.

2.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the embedding space coordinates
in the space-time regions with Minkowskian resp. Euclidian signature of the induced metric.
This is a condition on modified gamma matrices and hyper-quaternionicity states that they span
a hyper-quaternionic sub-space.

2.1.1 Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kähler form assignable to the complement of the tangent
space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced



2.1 Could A Weak Form Of Electric-Magnetic Duality Hold True? 8

metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of CP2 type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kähler electric fluxes are apart from constant
proportional to Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (2.1)

A more general form of this duality is suggested by the considerations of [K16] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (2.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on
Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X2 depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.
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2.1.2 Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L1] , [L1]
read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (2.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (2.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3V
2
−Qem , p = sin2(θW ) . (2.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L+sin2(θW )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2Z
4π~0

=
αem

p(1− p)
. (2.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the Kähler-Dirac operator to conserved charges implies cor-
relation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Qem and QZ would
be also seen as the identification of the fine structure constants αem and αZ . This however
requires weak isospin invariance.
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2.1.3 The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric
field equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has αK = g2K/4π~0 = αem ' 1/137, where
αem is finite structure constant in electron length scale and ~0 is the standard value of Planck
constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP2. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the “Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Qem
and QZ allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K23] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/αK and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2K/4π becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling α → α/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g2K/~ implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

K = n× g2K
~
, n ∈ Z . (2.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (2.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for CP2 type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP2 radius and αK the effective replacement g2K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
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be self-dual so that the density of Kähler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP2 is such that in CP2 coordinates for the Euclidian region the tensor (gαβgµν − gανgµβ)/

√
g

remains invariant. This is certainly the case for CP2 type vacuum extremals since by the light-
likeness of M4 projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.

2.1.4 Reduction of the quantization of Kähler electric charge to that of electromag-
netic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z0 field

γ = 3J − sin2θWR12 ,

Z0 = 2R03 . (2.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are effec-
tively absent. Only in phases with a large value of Planck constant classical Z0 field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K24]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and
CP2 are allowed as simplest possible solutions of field equations [K32]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with CP2 metric multiplied with the 3-volume
fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell



2.2 Magnetic Confinement, The Short Range Of Weak Forces, And Color
Confinement 12

current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.

2.2 Magnetic Confinement, The Short Range Of Weak Forces, And
Color Confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

2.2.1 How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3V cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!

2.2.2 Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced W boson
fields are vanishing. The vanishing of classical Z0 field can be poses as additional condition - at
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least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

2.2.3 Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state q±1/2 − X∓1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum
of color hyper charges coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kähler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP2

and believed on M4 × S2.
p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark

variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most

general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of M89 physics takes place in some shorter
scale and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons
would be by a factor 2(89−61)/2 = 214 higher and about 1.6 × 104 TeV. M89 quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths Le(k) =

√
5L(k): they are associated with Gaussian

Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D1] .
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2.2.4 Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [?] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies ZEO. A
highly attractive assumption is that the particles appearing at wormhole throats are on mass
shell particles. For incoming and outgoing elementary bosons and their super partners they
would be positive it resp. negative energy states with parallel on mass shell momenta. For
virtual bosons they the wormhole throats would have opposite sign of energy and the sum
of on mass shell states would give virtual net momenta. This would make possible twistor
description of virtual particles allowing only massless particles (in 4-D sense usually and in
8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.
In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K20] . If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.
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4. What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K21] .

2.3 Could Quantum TGD Reduce To Almost Topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
also for the Kähler-Dirac action action. I gave up this proposal but the following argument shows
that Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα
plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the

quantity J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement h→ n× h would effectively describe this. Boundary conditions would however
give 1/n factor so that ~ would disappear from the Kähler function! It is somewhat surprising
that Kähler action gives Chern-Simons action in the vacuum sector defined as sector for which
Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute “almost” would come from the fact that one has non-
vanishing classical Noether charges defined by Kähler action and non-trivial quantum dynamics in
M4 degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (“massless extremals” for which
weak self-duality condition does not make sense [K6] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kähler action. This implies that the M4 part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original näıve conclusion was that since Chern-Simons action depends on CP2 coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M4 degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kähler function must respect the weak electro-magnetic duality which relates
Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic
field. Therefore the dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβ gamma)

√
g4d

3x . (2.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.
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3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that for
rM = constant sphere - call it J1. The generalization of the weak form of self-duality
would be Jnβ = εnβγδK(Jγδ + εJ1

γδ). This form implies that the boundary term gives a

non-trivial contribution to the M4 part of the WCW metric even without the constraint
from electric-magnetic duality. Kähler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (2.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kähler current: dt = φjK . This condition in turn
implies d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more
concretely,

εαβγδjKβ ∂γj
K
delta = 0 . (2.13)

jK is a four-dimensional counterpart of Beltrami field [B8] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K6] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton current:
jK = φjI , where jI = ∗(J ∧A) is the instanton current, which is not conserved for 4-D CP2

projection. The conservation of jK implies the condition jαI ∂αφ = ∂αj
αφ and from this φ can

be integrated if the integrability condition jI∧djI = 0 holds true implying the same condition
for jK . By introducing at least 3 or CP2 coordinates as space-time coordinates, one finds that
the contravariant form of jI is purely topological so that the integrability condition fixes the
dependence on M4 coordinates and this selection is coded into the scalar function φ. These
functions define families of conserved currents jαKφ and jαI φ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A→ A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence

a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (2.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the Chern-Simons
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type term is trivial if the total weighted Kähler magnetic flux Qmφ =
∑∫

JφdA over wormhole
throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the Kähler-Dirac in-
teraction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not affecting Kähler action. The gauge transformed Kähler gauge potential
couples to the Kähler-Dirac equation and its effect could be visible in the value of Kähler
function and therefore also in the properties of the preferred extremal. The effect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD × CP2 generating the gauge transfor-
mation represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and
corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits
and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to Kähler-Dirac action as
boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M4 Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce effectively to massless on-shell states but have
non-physical helicity.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the
terms from light-like wormhole throats giving interaction term between positive and negative en-
ergy parts of the state. Hence Kähler function could be calculated without any knowledge about
the interior of the space-time sheets and TGD would reduce to almost topological QFT as specu-
lated earlier. Needless to say this would have immense boost to the program of constructing WCW
Kähler geometry.
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3 An attempt to understand preferred extremals of Kähler
action

Preferred extremal of Kähler action is one of the basic poorly defined notions of TGD. There are
pressing motivations for understanding what ”preferred” really means. For instance, the conformal
invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian
of quantum affine algebra (Kac-Moody type algebra) characterized by two complex coordinates
and therefore explaining naturally the effective 2-dimensionality [K13]. The problem is however
how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify
two preferred complex coordinates whose existence is also suggested by number theoretical vision
giving preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The
best one could hope is a general solution of field equations in accordance with the hints that TGD
is integrable quantum theory.

3.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

1. In positive energy ontology preferred extremal would be a space-time surface assignable to
given 3-surface and unique in the ideal situation: since one cannot pose conditions to the
normal derivatives of embedding space coordinates at 3-surface, there is infinity of extremals.
Some additional conditions are required and space-time surface would be analogous to Bohr
orbit: hence the attribute “preferred”. The problem would be to understand what “preferred”
could mean. The non-determinism of Kähler action however destroyed this dream in its
original form and led to zero energy ontology (ZEO).

2. In ZEO one considers extremals as space-time surfaces connecting two space-like 3-surfaces
at the boundaries. One might hope that these 4-surfaces are unique. The non-determinism
of Kähler action suggests that this is not the case. At least there is conformal invariance
respecting the light-likeness of the 3-D parton orbits at which the signature of the induced
metric changes: the conformal transformations would leave the space-like 3-D ends or at least
partonic 2-surfaces invariant. This non-determinism would correspond to quantum criticality.

3. Effective 2-dimensionality follows from strong form of general coordinate invariance (GCI)
stating that light-like partonic orbits and space-like 3-surfaces at the ends of space-time
surface are equivalent physically: partonic 2-surfaces and their 4-D tangent space data would
determine everything. One can however worry about how effective 2-dimensionality relates
to the fact that the modes of the induced spinor field are localized at string world sheets and
partonic 2-surface. Are the tangent space data equivalent with the data characterizing string
world sheets as surfaces carrying vanishing electroweak fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires that
the conformal equivalence classes of light-like surfaces must be counted as physical degrees
of freedom so that either space-like or light-like surfaces do not seem to be quite enough.

Should one then include also the light-like partonic orbits to the what one calls 3-surface?
The resulting connected 3-surfaces would define analogs of Wilson loops. Could the conformal
equivalence class of the preferred extremal be unique without any additional conditions? If
so, one could get rid of the attribute “preferred”. The fractal character of the many-sheeted
space-time however suggests that one can have this kind of uniqueness only in given length
scale resolution and that “radiative corrections” due to the non-determinism are always
present.

These considerations show that the notion of preferred extremal is still far from being precisely
defined and it is not even clear whether the attribute “preferred” is needed. If not then the question
is what are the extremals of Kähler action.
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3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this understand-
ing, one might gain new visions. The problem is that all these arguments are heuristic and rely
heavily on physical intuition. The following considerations relate to the space-time regions having
Minkowskian signature of the induced metric. The attempt to generalize the construction also to
Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred co-
ordinates for Minkowskian space-time sheet and might allow to identify string world sheets
for X4 as those for M4. Hamilton-Jacobi coordinates consist of light-like coordinate m and
its dual defining local 2-plane M2 ⊂M4 and complex transversal complex coordinates (w,w)
for a plane E2

x orthogonal to M2
x at each point of M4. Clearly, hyper-complex analyticity

and complex analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by
partonic 2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are
labelled by CP2, which might be called CPmod2 [K28]. The identification CP2 = CPmod2

motivates the notion of M8 −−M4 ×CP2 duality [K11]. It also inspires a concrete solution
ansatz assuming the equivalence of two different identifications of the quaternionic tangent
space of the space-time sheet and implying that string world sheets can be regarded as
strings in the 6-D coset space G2/SU(3). The group G2 of octonion automorphisms has
already earlier appeared in TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the
CP2 = CPmod2 conditions reduce to string model for partonic 2-surfaces in CP2 = SU(3)/U(2).
String model in both cases could mean just hypercomplex/complex analyticity for the coor-
dinates of the coset space as functions of hyper-complex/complex coordinate of string world
sheet/partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions.
Map preferred coordinates of H = M4 × CP2 to octonionic coordinate, form an arbitrary
octonion analytic function having expansion with real Taylor or Laurent coefficients to avoid
problems due to non-commutativity and non-associativity. Map the outcome to a point of
H to get a map H → H. This procedure is nothing but a generalization of Wick rotation to
get an 8-D generalization of analytic map.

2. Identify the preferred extremals of Kähler action as surfaces obtained by requiring the van-
ishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string
world sheets would correspond to commutative sub-manifolds of the space-time surface and
of embedding space and would emerge naturally. The ends of braid strands at partonic
2-surface would naturally correspond to the poles of the octonion analytic functions. This
would mean a huge generalization of conformal invariance of string models to octonionic
conformal invariance and an exact solution of the field equations of TGD and presumably of
quantum TGD itself.

3.3 Basic ideas about preferred extremals

3.3.1 The slicing of the space-time sheet by partonic 2-surfaces and string world
sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kähler
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action.

1. Almost topological QFT property means that the Kähler action reduces to Chern-Simons
terms assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in
the action density implied automatically if conserved Kähler current is proportional to the
instanton current with proportionality coefficient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is
that the flow lines of these currents define global coordinates. This means that these currents
are Beltrami flows [B8] so that corresponding 1-forms J satisfy the condition J ∧ dJ = 0.
These conditions are satisfied if

J = Φ∇Ψ

hold true for conserved currents. From this one obtains that Ψ defines global coordinate
varying along flow lines of J .

3. A possible interpretation is in terms of local polarization and momentum directions defined
by the scalar functions involved and natural additional conditions are that the gradients of
Ψ and Φ are orthogonal:

∇Φ · ∇Ψ = 0 ,

and that the Ψ satisfies massless d’Alembert equation

∇2Ψ = 0

as a consequence of current conservation. If Ψ defines a light-like vector field - in other words

∇Ψ · ∇Ψ = 0 ,

the light-like dual of Φ -call it Φc- defines a light-like like coordinate and Φ and Φc defines a
light-like plane at each point of space-time sheet.

If also Φ satisfies d’Alembert equation

∇2Φ = 0 ,

also the current

K = Ψ∇Φ

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal
to time-lik plane defined by local light-like momentum direction.

If Φ allows a continuation to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of space-time surface by Ψ and its dual (defining hyper-complex
coordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to
provide space-time surface with four coordinates very much analogous with Hamilton-Jacobi
coordinates of M4.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J
defined Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection
with the mathematics of string models. The two complex coordinates assignable to the
Yangian of affine algebra would naturally relate to string world sheets and partonic 2-surfaces
and the highly non-trivial challenge is to identify them appropriately.
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3.3.2 Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [K6] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M4 define its slicing by string world sheets parametrized
by partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an
integrable distribution of planes M2 and w would define a complex coordinate for the integrable
distribution of 2-planes E2 orthogonal to M2. There is a great temptation to assume that these
coordinates define preferred coordinates for M4.

1. The slicing is very much analogous to that for space-time sheets and the natural question is
how these slicings relate. What is of special interest is that the momentum plane M2 can
be defined by massless momentum. The scaling of this vector does not matter so that these
planes are labelled by points z of sphere S2 telling the direction of the line M2 ∩ E3, when
one assigns rest frame and therefore S2 with the preferred time coordinate defined by the
line connecting the tips of CD. This direction vector can be mapped to a twistor consisting of
a spinor and its conjugate. The complex scalings of the twistor (u, u)→ λu, u/λ) define the
same plane. Projective twistor like entities defining CP1 having only one complex component
instead of three are in question. This complex number defines with certain prerequisites a
local coordinate for space-time sheet and together with the complex coordinate of E2 could
serve as a pair of complex coordinates (z, w) for space-time sheet. This brings strongly in
mind the two complex coordinates appearing in the expansion of the generators of quantum
Yangian of quantum affine algebra [K13].

2. The coordinate Ψ appearing in Beltrami flow defines the light-like vector field defining M2

distribution. Its hyper-complex conjugate would define Ψc and conjugate light-like direction.
An attractive possibility is that Φ allows analytic continuation to a holomorphic function of
w. In this manner one would have four coordinates for M4 also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M2(x) ⊂ M4 = M2

x × E2
x representing momentum plane and polarization plane

E2 ⊂ E2
x×T (CP2). The moduli space of planes E2 ⊂ E6 is 8-dimensional and parametrized

by SO(6)/SO(2) × SO(4) for a given E2
x. How can one achieve this selection and what

conditions it must satisfy? Certainly the choice must be integrable but this is not the only
condition.

3.3.3 Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition
means that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-
time. It took several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the embedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds
to a preferred time axes (and rest frame) identified naturally as that connecting the tips of
CD. What modified gamma matrices mean depends on variational principle for space-time
surface. For volume action one would obtain induced gamma matrices. For Kähler action
one obtains something different. In particular, the modified gamma matrices do not define
vector basis identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kähler action span quaternionic sub-
space of the octonionic tangent space [K34, K25]. A further condition is that each quater-
nionic space defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at
given point. For instance, for massless extremals these densities are proportional to light-like
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vector so that the situation is degenerate and the space in question reduces to 2-D hyper-
complex sub-space since light-like vector defines plane M2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M2 ⊂M4 for preferred extremals? For massless extremals [K6] this condition
would be true. The orthogonal decomposition T (X4) = M2 ⊕⊥ E2 can be defined at each
point if this is true. For massless extremals also the functions Ψ and Φ can be identified.

2. One should answer also the following delicate question. Can M2 really depend on point x of
space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2 is same
everywhere. It however seems that one should allow an integrable distribution of M2

x such
that M2

x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the embedding space) at the entire space-time sheet
even when M2

x varies?

(a) Note first that G2 (see http://tinyurl.com/y9rrs7un) defines the Lie group of octo-
nionic automorphisms and G2 action is needed to change the preferred hyper-octonionic
sub-space. Various SU(3) subgroups of G2 are related by G2 automorphism. Clearly,
one must assign to each point of a string world sheet in the slicing parameterizing the
partonic 2-surfaces an element of G2. One would have Minkowskian string model with
G2 as a target space. As a matter fact, this string model is defined in the target space
G2/SU(3) having dimension D = 6 since SU(3) automorphisms leave given SU(3)
invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units
and octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color hypercharge” Y = −1/3
and its conjugate q1 with opposite color isospin and hypercharge.

(c) The CP2 point assigned with the quaternionic basis would correspond to the SU(3)
rotation needed to rotate the standard basis to this basis and would actually corre-
spond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is the basic
property of the solutions of the field equations representing Minkowskian string world
sheets. Also now the same assumption is highly natural. In the case of string mod-
els in Minkowski space, the reduction of the induced metric to standard form implies
Virasoro conditions and similar conditions are expected also now. There is no need to
introduce action principle -just the hyper-complex analycitity is enough-since Kähler
action already defines it.

3. The WZW model (see http://tinyurl.com/ydxcvfhv) inspired approach to the situation
would be following. The parameterization corresponds to a map g : X2 → G2 for which g de-
fines a flat G2 connection at string world sheet. WZW type action would give rise to this kind
of situation. The transition G2 → G2/SU(3) would require that one gauges SU(3) degrees of
freedom by bringing in SU(3) connection. Similar procedure for CP2 = SU(3)/U(2) would
bring in SU(3) valued chiral field and U(2) gauge field. Instead of introducing these connec-
tions one can simply introduce G2/SU(3) and SU(3)/U(2) valued chiral fields. What this
observation suggests that this ansatz indeed predicts gluons and electroweak gauge bosons
assignable to string like objects so that the mathematical picture would be consistent with
physical intuition.

3.3.4 The two interpretations of CP2

An old observation very relevant for what I have called M8 −H duality [K11] is that the moduli
space of quaternionic sub-spaces of octonionic space (identifiable as M8) containing preferred
hyper-complex plane is CP2. Or equivalently, the space of two planes whose addition extends
hyper-complex plane to some quaternionic subspace can be parametrized by CP2. This CP2

can be called it CPmod2 to avoid confusion. In the recent case this would mean that the space

http://tinyurl.com/y9rrs7un
http://tinyurl.com/ydxcvfhv
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E2(x) ⊂ E2
x × T (CP2) is represented by a point of CPmod2 . On the other hand, the embedding of

space-time surface to H defines a point of ”real” CP2. This gives two different CP2s.

1. The highly suggestive idea is that the identification CPmod2 = CP2 (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to CP2 would fix the local polarization plane completely. This condition for E2(x)
would be purely local and depend on the values of CP2 coordinates only. Second condition
for E2(x) would involve the gradients of embedding space coordinates including those of CP2

coordinates.

2. The conditions that the planes M2
x form an integrable distribution at space-like level and that

M2
x is determined by the modified gamma matrices. The integrability of this distribution for

M4 could imply the integrability for X2. X4 would differ from M4 only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of CP2

coordinates and makes them non-constant but allows to depend only on transversal degrees
of freedom? This condition is too strong even for simplest massless extremals for which CP2

coordinates depend on transversal coordinates defined by ε ·m and ε · k. One could however
allow dependence of CP2 coordinates on light-like M4 coordinate since the modification of
the induced metric is light-like so that light-like coordinate remains light-like coordinate in
this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most
general dependence of CP2 points on the light-like coordinates assignable to the distribu-
tion of M2

x would be dependence on either of the light-like coordinates of Hamilton-Jacobi
coordinates but not both.

3.4 What could be the construction recipe for the preferred extremals
assuming CP2 = CPmod

2 identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod2 identifica-
tion and by the tangent space of E2

x ×CP2 are same. The challenge is to transform this condition
to an explicit form. CP2 = CPmod2 identification should be general coordinate invariant. This
requires that also the representation of E2 as (e2, e3) plane is general coordinate invariant suggest-
ing that the use of preferred CP2 coordinates - presumably complex Eguchi-Hanson coordinates
- could make life easy. Preferred coordinates are also suggested by number theoretical vision. A
careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of
X4 but not in general identical with the tangent space: this would be the case only if the action
were 4-volume. I will use the notation Tmx (X4) about the modified tangent space and call the
vectors of Tmx (X4) modified tangent vectors. I hope that this would not cause confusion.

3.4.1 CP2 = CPmod2 condition

Quaternionic property of the counterpart of Tmx (X4) allows an explicit formulation using the
tangent vectors of Tmx (X4).

1. The unit vector pair (e2, e3) should correspond to a unique tangent vector of H defined
by the coordinate differentials dhk in some natural coordinates used. Complex Eguchi-
Hanson coordinates [L1] are a natural candidate for CP2 and require complexified octonionic
imaginary units. If octonionic units correspond to the tangent vector basis of H uniquely,
this is possible.

2. The pair (e2, e3) as also its complexification (q1 = e2 + ie3, q1 = e2 − ie3) is expressible as a
linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod2 = CP2

in canonical manner. This mapping is what should be expressed explicitly. One should
express given (e2, e3) in terms of SU(3) rotation applied to a standard vector. After that
one should define the corresponding CP2 point by the bundle projection SU(3)→ CP2.
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3. The tangent vector pair

(∂wh
k, ∂wh

k)

defines second representation of the tangent space of E2(x). This pair should be equivalent
with the pair (q1, q1). Here one must be however very cautious with the choice of coordinates.
If the choice of w is unique apart from constant the gradients should be unique. One can use
also real coordinates (x, y) instead of (w = x+ iy, w = x− iy) and the pair (e2, e3). One can
project the tangent vector pair to the standard vielbein basis which must correspond to the
octonionic basis

(∂xh
k, ∂yh

k)→ (∂xh
keAk eA, ∂yh

keAk )eA)↔ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of CP2

projection.

3.4.2 Formulation of quaternionicity condition in terms of octonionic structure con-
stants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic
algebra. The expressions for octonionic (see http://tinyurl.com/5m5lqr) resp. quaternionic
(see http://tinyurl.com/3rr79p9) structure constants can be found at [A5] resp. [A6].

1. The ansatz is

{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ≡

7∑
k=2

E2ke
k , E3 = E3ke

k ≡
7∑
k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (3.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle (see
http://tinyurl.com/5m5lqr) [A5] gives

f1klE2k = E3l , f1klE3k = −E2l , fklrE2kE3l = δr1 . (3.2)

Here the indices are raised by unit metric so that there is no difference between lower and
upper indices. Summation convention is assumed. Also the contribution of the real unit is
present in the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coefficients E2k and E3k and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (E2, E3) is of the form(

f1 1
−1 f1

)
,

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due
to the highly symmetric properties of the structure constants. In fact the equations can be
written as eigen conditions

f1 ◦ (E2 ± iE3) = ∓i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I1 analogous to color hyper charge. Both values of color hyper charged are obtained.

http://tinyurl.com/5m5lqr
http://tinyurl.com/3rr79p9
http://tinyurl.com/5m5lqr
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3.4.3 Explicit expression for the CP2 = CPmod2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under
SU(3). Note the analogy of triplet with color triplet of quarks. One can write complexified
basis as (1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis elements are

(q1, q2, q3) =
1√
2

(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind of line
can be used to form pair of complexified unit and its conjugate. In the tangent space of
M4 × CP2 the basis vectors q1, and q2 are mixtures of E2

x and CP2 tangent vectors. q3
involves only CP2 tangent vectors and there is a temptation to interpret it as the analog of
the quark having no color isospin.

2. The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any quark
in the triplet and q1 its conjugate in antitriplet. Having fixed some basis one can perform
SU(3) rotations to get a new basis. The action of the rotation is by 3 × 3 special unitary
matrix. The over all phases of its rows do not matter since they induce only a rotation in
(e2, e3) plane not affecting the plane itself. The action of SU(3) on q1 is simply the action
of its first row on (q1, q2, q3) triplet:

q1 → (Uq)1 = U11q1 + U12q2 + U13q3 ≡ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (3.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall phase
does not matter a point of CP2 is in question. The new real octonion units are given by the
formulas

e2 → Re(z1)e2 +Re(z2)e4 +Re(z3)e6 − Im(z1)e3 − Im(z2)e5 − Im(z3)e7 ,

e3 → Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(3.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with
z3 6= 0 are obtained as (ξ1, ξ2) = (z1/z3, z2/z3).

Using these expressions the equations expressing the conjecture CP2 = CPmod2 equivalence can
be expressed explicitly as first order differential equations. The conditions state the equivalence

(e2, e3) ↔ (∂xh
keAk eA, ∂yh

keAk eA) , (3.5)

where eA denote octonion units. The comparison of two pairs of vectors requires normalization
of the tangent vectors on the right hand side to unit vectors so that one takes unit vector in the
direction of the tangent vector. After this the vectors can be equated. This allows to expresses
the contractions of the partial derivatives with vielbein vectors with the 6 components of e2 and
e3. Each condition gives 6+6 first order partial differential equations which are non-linear by the
presence of the overal normalization factor for the right hand side. The equations are invariant
under scalings of (x, y). The very special form of these equations suggests that some symmetry is
involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamilton-Jacobi coordinates for M4 and Eguchi-Hanson complex co-
ordinates in which SU(2)× U(1) is represented linearly for CP2. These coordinates are preferred
because they carry deep physical meaning.
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3.4.4 Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 = CPmod2

conditions one has what one might call string model with 6-dimensional G2/SU(3) as targent
space. The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point
of G2/SU(3) defining what one means with standard quaternionic plane at given point of string
world sheet. The hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and par-
tonic 2-surfaces central for the proposed mathematical applications of TGD [K17, K18, K27, K19].
This duality suggests that the solutions to the CP2 = CPmod2 conditions could reduce to holomor-
phy with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions.
The dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual
string models inG2/SU(3) and SU(3)/U(2) and also to string model inM4 andX4! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-
surfaces. TGD seems to yield an inflation of string models! This not actually surprising since the
slicing of space-time sheets by string world sheets and partonic 2-surfaces implies automatically
various kinds of maps having interpretation in terms of string orbits.

4 In What Sense TGD Could Be An Integrable Theory?

During years evidence supporting the idea that TGD could be an integrable theory in some sense
has accumulated. The challenge is to show that various ideas about what integrability means form
pieces of a bigger coherent picture. Of course, some of the ideas are doomed to be only partially
correct or simply wrong. Since it is not possible to know beforehand what ideas are wrong and
what are right the situation is very much like in experimental physics and it is easy to claim (and
has been and will be claimed) that all this argumentation is useless speculation. This is the price
that must be paid for real thinking.

Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for
a linear system. In TGD framework this translates to quantum classical correspondence. The
solutions of Kähler-Dirac equation define the scattering data. This data should define a real
analytic function whose octonionic extension defines the space-time surface as a surface for which
its imaginary part in the representation as bi-quaternion vanishes. There are excellent hopes about
this thanks to the reduction of the Kähler-Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories,
list some bits of evidence for integrability in TGD framework, discuss once again the question
whether the different pieces of evidence are consistent with other and what one really means
with various notions. An an outcome I represent what I regard as a more coherent view about
integrability of TGD. The notion of octonion analyticity developed in the previous section is
essential for the for what follows.

4.1 What Integrable Theories Are?

The following is an attempt to get some bird’s eye of view about the landscape of integrable
theories.

4.1.1 Examples of integrable theories

Integrable theories are typically non-linear 1+1-dimensional (quantum) field theories. Solitons
and various other particle like structures are the characteristic phenomenon in these theories.
Scattering matrix is trivial in the sense that the particles go through each other in the scatter-
ing and suffer only a phase change. In particular, momenta are conserved. Korteveg- de Vries
equation (see http://tinyurl.com/3cyt8hk) [B2] was motivated by the attempt to explain the
experimentally discovered shallow water wave preserving its shape and moving with a constant
velocity. Sine-Gordon equation (see http://tinyurl.com/yafl243x) [B6] describes geometri-
cally constant curvature surfaces and defines a Lorentz invariant non-linear field theory in 1+1-
dimensional space-time, which can be applied to Josephson junctions (in TGD inspired quantum

http://tinyurl.com/3cyt8hk
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biology it is encountered in the model of nerve pulse [K24] ). Non- linear Schrödinger equation (see
http://tinyurl.com/y88efbo7) [B5] having applications to optics and water waves represents a
further example. All these equations have various variants.

From TGD point of view conformal field theories represent an especially interesting example
of integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by its
infinite-dimensional character implies infinite number of conserved quantities. The construction of
the theory reduces to the construction of the representations of (super-)conformal algebra. One
can solve 2-point functions exactly and characterize them in terms of (possibly anomalous) scaling
dimensions of conformal fields involved and the coefficients appearing in 3-point functions can be
solved in terms of fusion rules leading to an associative algebra for conformal fields. The basic
applications are to 2-dimensional critical thermodynamical systems whose scaling invariance gen-
eralizes to conformal invariance. String models represent second application in which a collection
of super-conformal field theories associated with various genera of 2-surface is needed to describe
loop corrections to the scattering amplitudes. Also moduli spaces of conformal equivalence classes
become important.

Topological quantum field theories (see http://tinyurl.com/lsvx7g3) are also examples of
integrable theories. Because of its independence on the metric Chern-Simons action (see http:

//tinyurl.com/ydgsqm2c) is in 3-D case the unique action defining a topological quantum field
theory. The calculations of knot invariants (for TGD approach see [K17] ), topological invariants
of 3-manifolds and 4-manifolds, and topological quantum computation (see http://tinyurl.com/
dkpo4y) (for a model of DNA as topological quantum computer see [K1] ) represent applications
of this approach. TGD as almost topological QFT means that the Kähler action for preferred ex-
tremals reduces to a surface term by the vanishing of Coulomb term in action and by the weak form
of electric-magnetic duality reduces to Chern-Simons action. Both Euclidian and Minkowskian re-
gions give this kind of contribution.
N = 4 SYM is the a four-dimensional and very nearly realistic candidate for an integral

quantum field theory. The observation that twistor amplitudes allow also a dual of the 4-D con-
formal symmetry motivates the extension of this symmetry to its infinite-dimensional Yangian
variant [A10]. Also the enormous progress in the construction of scattering amplitudes suggests
integrability. In TGD framework Yangian symmetry would emerge naturally by extending the
symplectic variant of Kac-Moody algebra from light-cone boundary to the interior of causal dia-
mond and the Kac-Moody algebra from light-like 3-surface representing wormhole throats at which
the signature of the induced metric changes to the space-time interior [K30].

4.1.2 About mathematical methods

The mathematical methods used in integrable theories are rather refined and have contributed to
the development of the modern mathematical physics. Mention only quantum groups, conformal
algebras, and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical problem
for which the interaction is characterized by a potential function or its analog to a linear scattering
problem depending on time. For instance, for the ordinary Schrödinger function one can solve
potential once single solution of the equation is known. This does not work in practice. One can
however gather information about the asymptotic states in scattering to deduce the potential. One
cannot do without information about bound state energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like
boundaries of CD (more precisely: the largest CD involved and defining the IR resolution for
momenta). From the scattering data coding information about scattering for various values of
energy of the incoming particle one deduced the potential function or its analog.

1. The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan (GML)
transform (see http://tinyurl.com/y9f7ybln) described in simple terms in [B7].

(a) In 1+1 dimensional case the S-matrix characterizing scattering is very simple since the
only thing that can take place in scattering is reflection or transmission. Therefore
the S-matrix elements describe either of these processes and by unitarity the sum of
corresponding probabilities equals to 1. The particle can arrive to the potential either

http://tinyurl.com/y88efbo7
http://tinyurl.com/lsvx7g3
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from left or right and is characterized by a momentum. The transmission coefficient
can have a pole meaning complex (imaginary in the simplest case) wave vector serving
as a signal for the formation of a bound state or resonance. The scattering data are
represented by the reflection and transmission coefficients as function of time.

(b) One can deduce an integral equation for a propagator like function K(t, x) describing
how delta pulse moving with light velocity is scattered from the potential and is ex-
pressible in terms of time integral over scattering data with contributions from both
scattering states and bound states. The derivation of GML transform [B7] uses time re-
versal and time translational invariance and causality defined in terms of light velocity.
After some tricks one obtains the integral equation as well as an expression for the time
independent potential as V (x) = K(x, x). The argument can be generalized to more
complex problems to deduce the GML transform.

2. The so called Lax pair (see http://tinyurl.com/yc93nw53) is one manner to describe inte-
grable systems [B3]. Lax pair consists of two operators L and M . One studies what might be
identified as “energy” eigenstates satisfying L(x, t)Ψ = λΨ. λ does not depend on time and
one can say that the dynamics is associated with x coordinate whereas as t is time coordinate
parametrizing different variants of eigenvalue problem with the same spectrum for L. The
operator M(t) does not depend on x at all and the independence of λ on time implies the
condition

∂tL = [L,M ] .

This equation is analogous to a quantum mechanical evolution equation for an operator
induced by time dependent “Hamiltonian” M and gives the non-linear classical evolution
equation when the commutator on the right hand side is a multiplicative operator (so that
it does not involve differential operators acting on the coordinate x). Non-linear classical
dynamics for the time dependent potential emerges as an integrability condition.

One could say that M(t) introduces the time evolution of L(t, x) as an automorphism
which depends on time and therefore does not affect the spectrum. One has L(t, x) =
U(t)L(0, x)U−1(t) with dU(t)/dt = M(t)U(t). The time evolution of the analog of the quan-
tum state is given by a similar equation.

3. A more refined view about Lax pair is based on the observation that the above equation can
be generalized so that M depends also on x. The generalization of the basic equation for
M(x, t) reads as

∂tL− ∂xM − [L,M ] = 0 .

The condition has interpretation as a vanishing of the curvature of a gauge potential having
components Ax = L,At = M . This generalization allows a beautiful geometric formulation of
the integrability conditions and extends the applicability of the inverse scattering transform.
The monodromy of the flat connection becomes important in this approach. Flat connections
in moduli spaces are indeed important in topological quantum field theories and in conformal
field theories.

4. There is also a connection with the so called Riemann-Hilbert problem (see http://tinyurl.
com/ybay4qjg) [A8]. The monodromies of the flat connection define monodromy group and
Riemann-Hilbert problem concerns the existence of linear differential equations having a given
monodromy group. Monodromy group emerges in the analytic continuation of an analytic
function and the action of the element of the monodromy group tells what happens for the
resulting many-valued analytic function as one turns around a singularity once (“mono-” ).
The linear equations obviously relate to the linear scattering problem. The flat connection
(M,L) in turn defines the monodromy group. What is needed is that the functions involved
are analytic functions of (t, x) replaced with a complex or hyper-complex variable. Again
Wick rotation is involved. Similar approach generalizes also to higher dimensional moduli
spaces with complex structures.

http://tinyurl.com/yc93nw53
http://tinyurl.com/ybay4qjg
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In TGD framework the effective 2-dimensionality raises the hope that this kind of mathemat-
ical apparatus could be used. An interesting possibility is that finite measurement resolution
could be realized in terms of a gauge group or Kac-Moody type group represented by trivial
gauge potential defining a monodromy group for n-point functions. Monodromy invariance
would hold for the full n-point functions constructed in terms of analytic n-point functions
and their conjugates. The ends of braid strands are natural candidates for the singularities
around which monodromies are defined.

4.2 Why TGD Could Be Integrable Theory In Some Sense?

There are many indications that TGD could be an integrable theory in some sense. The challenge is
to see which ideas are consistent with each other and to build a coherent picture where everything
finds its own place.

1. 2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for inte-
grability. Effective 2-dimensionality is suggested by the strong form of General Coordinate
Invariance implying also holography and generalized conformal invariance predicting infi-
nite number of conservation laws. The dual roles of partonic 2-surfaces and string world
sheets supports a four-dimensional generalization of conformal invariance. Twistor consider-
ations [K30, K5] indeed suggest that Yangian invariance and Kac-Moody invariances combine
to a 4-D analog of conformal invariance induced by 2-dimensional one by algebraic continu-
ation.

2. Octonionic representation of embedding space Clifford algebra and the identification of the
space-time surfaces as quaternionic space-time surfaces would define a number theoretically
natural generalization of conformal invariance. The reason for using gamma matrix repre-
sentation is that vector field representation for octonionic units does not exist. The problem
concerns the precise meaning of the octonionic representation of gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is
analytically continued from string curve to 8-D space by octonion real-analyticity. The
question is whether the Clifford algebra based notion of tangent space quaternionicity is
equivalent with octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must con-
sider seriously the possibility that associativity-co-associativity dichotomy corresponds to
Minkowskian-Euclidian dichotomy.

3. Field equations define hydrodynamic Beltrami flows satisfying integrability conditions of form
J ∧ dJ = 0.

(a) One can assign local momentum and polarization directions to the preferred extremals
and this gives a decomposition of Minkowskian space-time regions to massless quanta
analogous to the 1+1-dimensional decomposition to solitons. The linear superposition
of modes with 4-momenta with different directions possible for free Maxwell action does
not look plausible for the preferred extremals of Kähler action. This rather quantal and
solitonic character is in accordance with the quantum classical correspondence giving
very concrete connection between quantal and classical particle pictures. For 4-D volume
action one does not obtain this kind of decomposition. In 2-D case volume action gives
superposition of solutions with different polarization directions so that the situation is
nearer to that for free Maxwell action and is not like soliton decomposition.

(b) Beltrami property in strong sense allows to identify 4 preferred coordinates for the
space-time surface in terms of corresponding Beltrami flows. This is possible also in
Euclidian regions using two complex coordinates instead of hyper-complex coordinate
and complex coordinate. The assumption that isometry currents are parallel to the
same light-like Beltrami flow implies hydrodynamic character of the field equations in
the sense that one can say that each flow line is analogous to particle carrying some
quantum numbers. This property is not true for all extremals (say cosmic strings).
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(c) The tangent bundle theoretic view about integrability is that one can find a Lie algebra
of vector fields in some manifold spanning the tangent space of a lower-dimensional
manifolds and is expressed in terms of Frobenius theorem (see http://tinyurl.com/

of6vfz5) [A2]. The gradients of scalar functions defining Beltrami flows appearing in
the ansatz for preferred exremals would define these vector fields and the slicing. Par-
tonic 2-surfaces would correspond to two complex conjugate vector fields (local polar-
ization direction) and string world sheets to light-like vector field and its dual (light-like
momentum directions). This slicing generalizes to the Euclidian regions.

4. Infinite number of conservation laws is the signature of integrability. Classical field equations
follow from the condition that the vector field defined by Kähler-Dirac gamma matrices has
vanishing divergence and can be identified an integrability condition for the Kähler-Dirac
equation guaranteeing also the conservation of super currents so that one obtains an infinite
number of conserved charges.

5. Quantum criticality is a further signal of integrability. 2-D conformal field theories describe
critical systems so that the natural guess is that quantum criticality in TGD framework
relates to the generalization of conformal invariance and to integrability. Quantum criticality
implies that Kähler coupling strength is analogous to critical temperature. This condition
does affects classical field equations only via boundary conditions expressed as weak form
of electric magnetic duality at the wormhole throats at which the signature of the metric
changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined by
the second derivatives of potential is similar signature and applies in catastrophe theory.
Therefore the existence of vanishing second variations of Kähler action should characterize
criticality and define a property of preferred extremals. The vanishing of second variations
indeed leads to an infinite number of conserved currents [K6] following the conditions that the
deformation of Kähler-Dirac gamma matrix is also divergenceless and that the Kähler-Dirac
equation associated with it is satisfied.

4.3 Could TGD Be An Integrable Theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical correspon-
dence could be seen as a correspondence between linear quantum dynamics and non-linear clas-
sical dynamics. Integrability would realize this correspondence. In integrable models such as
Sine-Gordon equation particle interactions are described by potential in 1+1 dimensions. This too
primitive for the purposes of TGD. The vertices of generalized Feynman diagrams take care of
this. At lines one has free particle dynamics so that the situation could be much simpler than in
integrable models if one restricts the considerations to the lines or Minkowskian space-time regions
surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized
Feynman diagram should be obtainable from the linear dynamics for the induced spinor fields
defined by Kähler-Dirac operator. There are two options.

1. Strong form of the quantum classical correspondence states that each solution for the linear
dynamics of spinor fields corresponds to space-time sheet. This is analogous to solving the
potential function in terms of a single solution of Schrödinger equation. Coupling of space-
time geometry to quantum numbers via measurement interaction term is a proposal for
realizing this option. It is however the quantum numbers of positive/negative energy parts
of zero energy state which would be visible in the classical dynamics rather than those of
induced spinor field modes.

2. Only overall dynamics characterized by scattering data- the counterpart of S-matrix for the
Kähler-Dirac operator- is mapped to the geometry of the space-time sheet. This is much
more abstract realization of quantum classical correspondence.

3. Can these two approaches be equivalent? This might be the case since quantum numbers of
the state are not those of the modes of induced spinor fields.

http://tinyurl.com/of6vfz5
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What the scattering data could be for the induced spinor field satisfying Kähler-Dirac equation?

1. If the solution of field equation has hydrodynamic character, the solutions of the Kähler-
Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow. These
correspond to basic solutions and the general solution is a superposition of these. There is
no dispersion and the dynamics is that of geometric optics at the basic level. This means
geometric optics like character of the spinor dynamics.

Solutions of the Kähler-Dirac equation are completely analogous to the pulse solutions defin-
ing the fundamental solution for the wave equation in the argument leading from wave
equation with external time independent potential to Marchenko-Gelfand-Levitan equation
allowing to identify potential in terms of scattering data. There is however no potential
present now since the interactions are described by the vertices of Feynman diagram where
the particle lines meet. Note that particle like regions are Euclidian and that this picture
applies only to the Minkowskian exteriors of particles.

2. Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected
by flow lines. Partonic 2-surfaces at which the signature of the induced metric changes are
in a special position. Only the imaginary part of the bi-quaternionic value of the octonion
valued map is non-vanishing at these surfaces which can be said to be co-complex 2-surfaces.
By geometric optics behavior the scattering data correspond to a diffeomorphism mapping
initial partonic 2-surface to the final one in some preferred complex coordinates common to
both ends of the line.

3. What could be these preferred coordinates? Complex coordinates for S2 at light-cone bound-
ary define natural complex coordinates for the partonic 2-surface. With these coordinates
the diffeomorphism defining scattering data is diffeomorphism of S2. Suppose that this map
is real analytic so that maps “real axis” of S2 to itself. This map would be same as the map
defining the octonionic real analyticity as algebraic extension of the complex real analytic
map. By octonionic analyticity one can make large number of alternative choices for the
coordinates of partonic 2-surface.

4. There can be non-uniqueness due to the possibility of G2/SU(3) valued map characterizing
the local octonionic units. The proposal is that the choice of octonionic imaginary units
can depend on the point of string like orbit: this would give string model in G2/SU(3).
Conformal invariance for this string model would imply analyticity and helps considerably
but would not probably fix the situation completely since the element of the coset space
would constant at the partonic 2-surfaces at the ends of CD. One can of course ask whether
the G2/SU(3) element could be constant for each propagator line and would change only at
the 2-D vertices?

This would be the inverse scattering problem formulated in the spirit of TGD. There could
be also dependence of space-time surface on quantum numbers of quantum states but not on
individual solution for the induced spinor field since the scattering data of this solution would be
purely geometric.

5 Do Geometric Invariants Of Preferred Extremals Define
Topological Invariants Of Space-time Surface And Code
For Quantumphysics?

The recent progress in the understanding of preferred extremals [K6] led to a reduction of the field
equations to conditions stating for Euclidian signature the existence of Kähler metric. The resulting
conditions are a direct generalization of corresponding conditions emerging for the string world
sheet and stating that the 2-metric has only non-diagonal components in complex/hypercomplex
coordinates. Also energy momentum of Kähler action and has this characteristic (1, 1) tensor
structure. In Minkowskian signature one obtains the analog of 4-D complex structure combining
hyper-complex structure and 2-D complex structure.
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The construction lead also to the understanding of how Einstein’s equations with cosmological
term follow as a consistency condition guaranteeing that the covariant divergence of the Maxwell’s
energy momentum tensor assignable to Kähler action vanishes. This gives T = kG+Λg. By taking
trace a further condition follows from the vanishing trace of T :

R =
4Λ

k
. (5.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmological con-
stant is very strong prediction. Note that the accelerating expansion of the Universe would support
positive value of Λ. Note however that both Λ and k ∝ 1/G are both parameters characterizing one
particular preferred extremal. One could of course argue that the dynamics allowing only constant
curvature space-times is too simple. The point is however that particle can topologically condense
on several space-time sheets meaning effective superposition of various classical fields defined by
induced metric and spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canonical
representatives for the constant curvature manifolds playing central role in Thurston’s geometriza-
tion theorem (see http://tinyurl.com/y8bbzlnr) [A9] known also as hyperbolization theorem
implying that geometric invariants of space-time surfaces transform to topological invariants. The
generalization of the notion of Ricci flow to Maxwell flow in the space of metrics and further to
Kähler flow for preferred extremals in turn gives a rather detailed vision about how preferred ex-
tremals organize to one-parameter orbits. It is quite possible that Kähler flow is actually discrete.
The natural interpretation is in terms of dissipation and self organization.

Quantum classical correspondence suggests that this line of thought could be continued even
further: could the geometric invariants of the preferred extremals could code not only for space-time
topology but also for quantum physics? How to calculate the correlation functions and coupling
constant evolution has remained a basic unresolved challenge of quantum TGD. Could the corre-
lation functions be reduced to statistical geometric invariants of preferred extemals? The latest
(means the end of 2012) and perhaps the most powerful idea hitherto about coupling constant evo-
lution is quantum classical correspondence in statistical sense stating that the statistical properties
of a preferred extremal in quantum superposition of them are same as those of the zero energy state
in question. This principle would be quantum generalization of ergodic theorem stating that the
time evolution of a single member of ensemble represents the ensemble statistically. This principle
would allow to deduce correlation functions and S-matrix from the statistical properties of single
preferred extremal alone using classical intuition. Also coupling constant evolution would be coded
by the statistical properties of the representative preferred extremal.

5.1 Preferred Extremals Of Kähler Action As Manifolds With Constant
Ricci Scalar Whose Geometric Invariants Are TopologicalInvariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants of
space-time surface serve as topological invariants. The reduction of Kähler action to 3-D Chern-
Simons terms (see http://tinyurl.com/ybp86sho) [K6] gives support for this conjecture as a
classical counterpart for the view about TGD as almost topological QFT. The following arguments
give a more precise content to this conjecture in terms of existing mathematics.

1. It is not possible to represent the scaling of the induced metric as a deformation of the
space-time surface preserving the preferred extremal property since the scale of CP2 breaks
scale invariance. Therefore the curvature scalar cannot be chosen to be equal to one numer-
ically. Therefore also the parameter R = 4Λ/k and also Λ and k separately characterize the
equivalence class of preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond CD remains constant
along the orbits of the flow and thus characterizes the space-time surface. Λ and even k ∝ 1/G
can indeed depend on space-time sheet and p-adic length scale hypothesis suggests a discrete
spectrum for Λ/k expressible in terms of p-adic length scales: Λ/k ∝ 1/L2

p with p ' 2k

favored by p-adic length scale hypothesis. During cosmic evolution the p-adic length scale

http://tinyurl.com/y8bbzlnr
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would increase gradually. This would resolve the problem posed by cosmological constant in
GRT based theories.

2. One could also see the preferred extremals as 4-D counterparts of constant curvature 3-
manifolds in the topology of 3-manifolds. An interesting possibility raised by the observed
negative value of Λ is that most 4-surfaces are constant negative curvature 4-manifolds.
By a general theorem coset spaces (see http://tinyurl.com/y8d3udpr) H4/Γ, where H4 =
SO(1, 4)/SO(4) is hyperboloid of M5 and Γ a torsion free discrete subgroup of SO(1, 4) [A3].
It is not clear to me, whether the constant value of Ricci scalar implies constant sectional
curvatures and therefore hyperbolic space property. It could happen that the space of spaces
with constant Ricci curvature contain a hyperbolic manifold as an especially symmetric
representative. In any case, the geometric invariants of hyperbolic metric are topological
invariants.

By Mostow rigidity theorem (see http://tinyurl.com/yacbu8sk) [A4] finite-volume hy-
perbolic manifold is unique for D > 2 and determined by the fundamental group of the
manifold. Since the orbits under the Kähler flow preserve the curvature scalar the man-
ifolds at the orbit must represent different embeddings of one and hyperbolic 4-manifold.
In 2-D case the moduli space for hyperbolic metric for a given genus g > 0 is defined by
Teichmueller parameters and has dimension 6(g − 1). Obviously the exceptional character
of D = 2 case relates to conformal invariance. Note that the moduli space in question (see
http://tinyurl.com/ybowqm5v) plays a key role in p-adic mass calculations [K10].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions and
maybe generalize also to Minkowskian regions. If so then both “topological” and “geometro”
in “Topological GeometroDynamics” would be fully justified. The fact that geometric invari-
ants become topological invariants also conforms with “TGD as almost topological QFT”
and allows the notion of scale to find its place in topology. Also the dream about exact
solvability of the theory would be realized in rather convincing manner.

These conjectures are the main result independent of whether the generalization of the Ricci
flow discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates in
the space of preferred extremals of Kähler action. My sincere hope is that the reader could grasp
how far reaching these result really are.

5.2 Is There A Connection Between Preferred Extremals And AdS4/CFT
Correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and have
negative scalar curvature for negative value of Λ. 4-D space-times with hyperbolic metric provide
canonical representation for a large class of four-manifolds and an interesting question is whether
these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS4. This suggests
at connection with AdS4/CFT correspondence of M-theory. The boundary of AdS would be now
replaced with 3-D light-like orbit of partonic 2-surface at which the signature of the induced metric
changes. The metric 2-dimensionality of the light-like surface makes possible generalization of 2-D
conformal invariance with the light-like coordinate taking the role of complex coordinate at light-
like boundary. AdS could represent a special case of a more general family of space-time surfaces
with constant Ricci scalar satistying Einstein-Maxwell equations and generalizing the AdS4/CFT
correspondence. There is however a strong objection from cosmology: the accelerated expansion
of the Universe requires positive value of Λ and favors De Sitter Space dS4 instead of AdS4.

These observations provide motivations for finding whether AdS4 and/or dS4 allows an embed-
ding as a vacuum extremal to M4 × S2 ⊂M4 ×CP2, where S2 is a homologically trivial geodesic
sphere of CP2. It is easy to guess the general form of the embedding by writing the line elements
of, M4, S2, and AdS4.

1. The line element of M4 in spherical Minkowski coordinates (m, rM , θ, φ) reads as

ds2 = dm2 − dr2M − r2MdΩ2 . (5.2)

http://tinyurl.com/y8d3udpr
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2. Also the line element of S2 is familiar:

ds2 = −R2(dΘ2 + sin2(θ)dΦ2) . (5.3)

3. By visiting in Wikipedia (see http://tinyurl.com/y9hw95ql) one learns that in spherical
coordinate the line element of AdS4/dS4 is given by

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dΩ2 ,

A(r) = 1 + εy2 , y =
r

r0
,

ε = 1 for AdS4 , ε = −1 for dS4 . (5.4)

4. From these formulas it is easy to see that the ansatz is of the same general form as for the
embedding of Schwartschild-Nordstöm metric:

m = Λt+ h(y) , rM = r ,
Θ = s(y) , Φ = ω(t+ f(y)) .

(5.5)

The non-trivial conditions on the components of the induced metric are given by

gtt = Λ2 − x2sin2(Θ) = A(r) ,

gtr =
1

r0

[
Λ
dh

dy
− x2sin2(θ)

df

dr

]
= 0 ,

grr =
1

r20

[
(
dh

dy
)2 − 1− x2sin2(θ)(

df

dy
)2 −R2(

dΘ

dy
)2
]

= − 1

A(r)
,

x = Rω . (5.6)

By some simple algebraic manipulations one can derive expressions for sin(Θ), df/dr and dh/dr.

1. For Θ(r) the equation for gtt gives the expression

sin(Θ) = ±P
1/2

x
,

P = Λ2 −A = Λ2 − 1− εy2 . (5.7)

The condition 0 ≤ sin2(Θ) ≤ 1 gives the conditions

(Λ2 − x2 − 1)1/2 ≤ y ≤ (Λ2 − 1)1/2 for ε = 1 (AdS4) ,
(−Λ2 + 1)1/2 ≤ y ≤ (x2 + 1− Λ2)1/2 for ε = −1 (dS4) .

(5.8)

Only a spherical shell is possible in both cases. The model for the final state of star considered
in [K32] predicted similar layer layer like structure and inspired the proposal that stars quite
generally have an onion-like structure with radii of various shells characterize by p-adic length
scale hypothesis and thus coming in some powers of

√
2. This brings in mind also Titius-Bode

law.

2. From the vanishing of gtr one obtains

dh

dy
=

P

Λ

df

dy
.

(5.9)

http://tinyurl.com/y9hw95ql
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3. The condition for grr gives

(
df

dy
)2 =

r20
AP

[A−1 −R2(
dΘ

dy
)2] . (5.10)

Clearly, the right-hand side is positive if P ≥ 0 holds true and RdΘ/dy is small. One can
express dΘ/dy using chain rule as

(
dΘ

dy
)2 = x2y2

P (P−x2) . (5.11)

One obtains

(
df

dy
)2 = Λr20

y2

AP

[
1

1 + y2
− x2(

R

r0
)2

1

P (P − x2)

]
.

(5.12)

The right hand side of this equation is non-negative for certain range of parameters and
variable y. Note that for r0 � R the second term on the right hand side can be neglected.
In this case it is easy to integrate f(y).

The conclusion is that both AdS4 and dS4 allow a local embedding as a vacuum extremal.
Whether also an embedding as a non-vacuum preferred extremal to M4 × S2, S2 a homologically
non-trivial geodesic sphere is possible, is an interesting question.

5.3 Generalizing Ricci Flow To Maxwell Flow For 4-Geometries And
Kähler Flow For Space-Time Surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants of Rie-
mann manifolds. I certainly did not have this in mind when I choose to call my unification attempt
“Topological Geometrodynamics” but this title strongly suggests that a suitable generalization of
Ricci flow could play a key role in the understanding of also TGD.

5.3.1 Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a general-
ization of the well-known volume preserving Ricci flow (see http://tinyurl.com/2cwlzh9l) [A7]
introduced by Richard Hamilton. Ricci flow is defined in the space of Riemann metrics as

dgαβ
dt

= −2Rαβ + 2
Ravg
D

gαβ . (5.13)

Here Ravg denotes the average of the scalar curvature, and D is the dimension of the Riemann
manifold. The flow is volume preserving in average sense as one easily checks (〈gαβdgαβ/dt〉 = 0).
The volume preserving property of this flow allows to intuitively understand that the volume of
a 3-manifold in the asymptotic metric defined by the Ricci flow is topological invariant. The
fixed points of the flow serve as canonical representatives for the topological equivalence classes
of 3-manifolds. These 3-manifolds (for instance hyperbolic 3-manifolds with constant sectional
curvatures) are highly symmetric. This is easy to understand since the flow is dissipative and
destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called
Maxwell flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

http://tinyurl.com/2cwlzh9l
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1. First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes for the
volume preserving character of the flow defined as

dgαβ
dt

= Tαβ . (5.14)

Taking covariant divergence on both sides and assuming that d/dt and Dα commute, one
obtains that Tαβ is divergenceless.

This is true if one assumes Einstein’s equations with cosmological term. This gives

dgαβ
dt

= kGαβ + Λgαβ = kRαβ + (−kR
2

+ Λ)gαβ . (5.15)

The trace of this equation gives that the curvature scalar is constant. Note that the value of
the Kähler coupling strength plays a highly non-trivial role in these equations and it is quite
possible that solutions exist only for some critical values of αK . Quantum criticality should
fix the allow value triplets (G,Λ, αK) apart from overall scaling

(G,Λ, αK)→ (xG,Λ/x, xαK .

Fixing the value of G fixes the values remaining parameters at critical points. The rescaling
of the parameter t induces a scaling by x.

2. By taking trace one obtains the already mentioned condition fixing the curvature to be
constant, and one can write

dgαβ
dt

= kRαβ − Λgαβ . (5.16)

Note that in the recent case Ravg = R holds true since curvature scalar is constant. The
fixed points of the flow would be Einstein manifolds (see http://tinyurl.com/ybrnakuu)
[A1, A13] satisfying

Rαβ =
Λ

k
gαβ (5.17)

.

3. It is by no means obvious that continuous flow is possible. The condition that Einstein-
Maxwell equations are satisfied might pick up from a completely general Maxwell flow a
discrete subset as solutions of Einstein-Maxwell equations with a cosmological term. If so,
one could assign to this subset a sequence of values tn of the flow parameter t.

4. I do not know whether 3-dimensionality is somehow absolutely essential for getting the topo-
logical classification of closed 3-manifolds using Ricci flow. This ignorance allows me to pose
some innocent questions. Could one have a canonical representation of 4-geometries as spaces
with constant Ricci scalar? Could one select one particular Einstein space in the class four-
metrics and could the ratio Λ/k represent topological invariant if one normalizes metric or
curvature scalar suitably. In the 3-dimensional case curvature scalar is normalized to unity.
In the recent case this normalization would give k = 4Λ in turn giving Rαβ = gαβ/4. Does
this mean that there is only single fixed point in local sense, analogous to black hole toward
which all geometries are driven by the Maxwell flow? Does this imply that only the 4-volume
of the original space would serve as a topological invariant?

http://tinyurl.com/ybrnakuu
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5.3.2 Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow would be the
appropriate term and provides families of preferred extremals. Since space-time surfaces inside CD
are the basic physical objects are in TGD framework, a possible interpretation of these families
would be as flows describing physical dissipation as a four-dimensional phenomenon polishing
details from the space-time surface interpreted as an analog of Bohr orbit.

1. The flow is now induced by a vector field jk(x, t) of the space-time surface having values in
the tangent bundle of embedding space M4 ×CP2. In the most general case one has Kähler
flow without the Einstein equations. This flow would be defined in the space of all space-time
surfaces or possibly in the space of all extremals. The flow equations reduce to

hklDαj
k(x, t)Dβh

l =
1

2
Tαβ . (5.18)

The left hand side is the projection of the covariant gradient Dαj
k(x, t) of the flow vector

field jk(x, t) to the tangent space of the space-time surface. Dalpha is covariant derivative
taking into account that jk is embedding space vector field. For a fixed point space-time
surface this projection must vanish assuming that this space-time surface reachable. A good
guess for the asymptotia is that the divergence of Maxwell energy momentum tensor vanishes
and that Einstein’s equations with cosmological constant are well-defined.

Asymptotes corresponds to vacuum extremals. In Euclidian regions CP2 type vacuum ex-
tremals and in Minkowskian regions to any space-time surface in any 6-D sub-manifold
M4 × Y 2, where Y 2 is Lagrangian sub-manifold of CP2 having therefore vanishing induced
Kähler form. Symplectic transformations of CP2 combined with diffeomorphisms of M4 give
new Lagrangian manifolds. One would expect that vacuum extremals are approached but
never reached at second extreme for the flow.

If one assumes Einstein’s equations with a cosmological term, allowed vacuum extremals
must be Einstein manifolds. For CP2 type vacuum extremals this is the case. It is quite
possible that these fixed points do not actually exist in Minkowskian sector, and could be
replaced with more complex asymptotic behavior such as limit, chaos, or strange attractor.

2. The flow could be also restricted to the space of preferred extremals. Assuming that Einstein
Maxwell equations indeed hold true, the flow equations reduce to

hklDαj
k(x, t)∂βh

l =
1

2
(kRαβ − Λgαβ) . (5.19)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the space
of all 4-surfaces.

3. One can also consider a situation in which jk(x, t) is replaced with jk(h, t) defining a flow
in the entire embedding space. This assumption is probably too restrictive. In this case the
equations reduce to

(Drjl(x, t) +Dljr)∂αh
r∂βh

l = kRαβ − Λgαβ . (5.20)

Here Dr denotes covariant derivative. Asymptotia is achieved if the tensor Dkjl + Dkjl
becomes orthogonal to the space-time surface. Note for that Killing vector fields of H the left
hand side vanishes identically. Killing vector fields are indeed symmetries of also asymptotic
states.
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It must be made clear that the existence of a continuous flow in the space of preferred extremals
might be too strong a condition. Already the restriction of the general Maxwell flow in the
space of metrics to solutions of Einstein-Maxwell equations with cosmological term might lead
to discretization, and the assumption about reprentability as 4-surface in M4 × CP2 would give
a further condition reducing the number of solutions. On the other hand, one might consiser a
possibility of a continuous flow in the space of constant Ricci scalar metrics with a fixed 4-volume
and having hyperbolic spaces as the most symmetric representative.

5.3.3 Dissipation, self organization, transition to chaos, and coupling constant evo-
lution

A beautiful connection with concepts like dissipation, self-organization, transition to chaos, and
coupling constant evolution suggests itself.

1. It is not at all clear whether the vacuum extremal limits of the preferred extremals can
correspond to Einstein spaces except in special cases such as CP2 type vacuum extremals
isometric with CP2. The imbeddability condition however defines a constraint force which
might well force asymptotically more complex situations such as limit cycles and strange
attractors. In ordinary dissipative dynamics an external energy feed is essential prerequisite
for this kind of non-trivial self-organization patterns.

In the recent case the external energy feed could be replaced by the constraint forces due to
the imbeddability condition. It is not too difficult to imagine that the flow (if it exists!) could
define something analogous to a transition to chaos taking place in a stepwise manner for crit-
ical values of the parameter t. Alternatively, these discrete values could correspond to those
values of t for which the preferred extremal property holds true for a general Maxwell flow
in the space of 4-metrics. Therefore the preferred extremals of Kähler action could emerge
as one-parameter (possibly discrete) families describing dissipation and self-organization at
the level of space-time dynamics.

2. For instance, one can consider the possibility that in some situations Einstein’s equations
split into two mutually consistent equations of which only the first one is independent

xJανJ
νβ = Rαβ ,

LK = xJανJ
νβ = 4Λ ,

x =
1

16παK
. (5.21)

Note that the first equation indeed gives the second one by tracing. This happens for CP2

type vacuum extremals.

Kähler action density would reduce to cosmological constant which should have a continuous
spectrum if this happens always. A more plausible alternative is that this holds true only
asymptotically. In this case the flow equation could not lead arbitrary near to vacuum
extremal, and one can think of situation in which LK = 4Λ defines an analog of limiting
cycle or perhaps even strange attractor. In any case, the assumption would allow to deduce
the asymptotic value of the action density which is of utmost importance from calculational
point of view: action would be simply SK = 4ΛV4 and one could also say that one has
minimal surface with Λ taking the role of string tension.

3. One of the key ideas of TGD is quantum criticality implying that Kähler coupling strength is
analogous to critical temperature. Second key idea is that p-adic coupling constant evolution
represents discretized version of continuous coupling constant evolution so that each p-adic
prime would correspond a fixed point of ordinary coupling constant evolution in the sense
that the 4-volume characterized by the p-adic length scale remains constant. The invariance
of the geometric and thus geometric parameters of hyperbolic 4-manifold under the Kähler
flow would conform with the interpretation as a flow preserving scale assignable to a given
p-adic prime. The continuous evolution in question (if possible at all!) might correspond to
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a fixed p-adic prime. Also the hierarchy of Planck constants relates to this picture naturally.
Planck constant ~eff = n~ corresponds to a multi-furcation generating n-sheeted structure
and certainly affecting the fundamental group.

4. One can of course question the assumption that a continuous flow exists. The property
of being a solution of Einstein-Maxwell equations, imbeddability property, and preferred
extremal property might allow allow only discrete sequences of space-time surfaces perhaps
interpretable as orbit of an iterated map leading gradually to a fractal limit. This kind of
discrete sequence might be also be selected as preferred extremals from the orbit of Maxwell
flow without assuming Einstein-Maxwell equations. Perhaps the discrete p-adic coupling
constant evolution could be seen in this manner and be regarded as an iteration so that the
connection with fractality would become obvious too.

5.3.4 Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and almost
constancy of LK suggest an interpretation in terms of 4-D variant of thermodynamics natural in
zero energy ontology (ZEO), where physical states are analogs for pairs of initial and final states of
quantum event are quantum superpositions of classical time evolutions. Quantum theory becomes
a “square root” of thermodynamics so that 4-D analog of thermodynamics might even replace
ordinary thermodynamics as a fundamental description. If so this 4-D thermodynamics should be
qualitatively consistent with the ordinary 3-D thermodynamics.

1. The first näıve guess would be the interpretation of the action density LK as an analog of
energy density e = E/V3 and that of R as the analog to entropy density s = S/V3. The
asymptotic states would be analogs of thermodynamical equilibria having constant values of
LK and R.

2. Apart from an overall sign factor ε to be discussed, the analog of the first law de = Tds −
pdV/V would be

dLK = kdR+ Λ
dV4
V4

.

One would have the correspondences S → εRV4, e → εLK and k → T , p → −Λ. k ∝ 1/G
indeed appears formally in the role of temperature in Einstein’s action defining a formal
partition function via its exponent. The analog of second law would state the increase of the
magnitude of εRV4 during the Kähler flow.

3. One must be very careful with the signs and discuss Euclidian and Minkowskian regions
separately. Concerning purely thermodynamic aspects at the level of vacuum functional
Euclidian regions are those which matter.

(a) For CP2 type vacuum extremals LK ∝ E2 + B2, R = Λ/k, and Λ are positive. In
thermodynamical analogy for ε = 1 this would mean that pressure is negative.

(b) In Minkowskian regions the value of R = Λ/k is negative for Λ < 0 suggested by the
large abundance of 4-manifolds allowing hyperbolic metric and also by cosmological
considerations. The asymptotic formula LK = 4Λ considered above suggests that also
Kähler action is negative in Minkowskian regions for magnetic flux tubes dominating
in TGD inspired cosmology: the reason is that the magnetic contribution to the action
density LK ∝ E2 −B2 dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian
regions assuming that the evolution by quantum jumps has Kähler flow as a space-time correlate.

1. In Euclidian regions the choice ε = 1 seems to be more reasonable one. In Euclidian regions
−Λ as the analog of pressure would be negative, and asymptotically (that is for CP2 type
vacuum extremals) its value would be proportional to Λ ∝ 1/GR2, where R denotes CP2

radius defined by the length of its geodesic circle.
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A possible interpretation for negative pressure is in terms of string tension effectively inducing
negative pressure (note that the solutions of the Kähler-Dirac equation indeed assign a string
to the wormhole contact). The analog of the second law would require the increase of RV4 in
quantum jumps. The magnitudes of LK , R, V4 and Λ would be reduced and approach their
asymptotic values. In particular, V4 would approach asymptotically the volume of CP2.

2. In Minkowskian regions Kähler action contributes to the vacuum functional a phase factor
analogous to an imaginary exponent of action serving in the role of Morse function so that
thermodynamics interpretation can be questioned. Despite this one can check whether ther-
modynamic interpretation can be considered. The choice ε = −1 seems to be the correct
choice now. −Λ would be analogous to a negative pressure whose gradually decreases. In
3-D thermodynamics it is natural to assign negative pressure to the magnetic flux tube like
structures as their effective string tension defined by the density of magnetic energy per unit
length. −R ≥ 0 would entropy and −LK ≥ 0 would be the analog of energy density.

R = Λ/k and the reduction of Λ during cosmic evolution by quantum jumps suggests that
the larger the volume of CD and thus of (at least) Minkowskian space-time sheet the smaller
the negative value of Λ.

Assume the recent view about state function reduction explaining how the arrow of geometric
time is induced by the quantum jump sequence defining experienced time [K3]. According
to this view zero energy states are quantum superpositions over CDs of various size scales
but with common tip, which can correspond to either the upper or lower light-like boundary
of CD. The sequence of quantum jumps the gradual increase of the average size of CD in
the quantum superposition and therefore that of average value of V4. On the other hand,
a gradual decrease of both −LK and −R looks physically very natural. If Kähler flow
describes the effect of dissipation by quantum jumps in ZEO then the space-time surfaces
would gradually approach nearly vacuum extremals with constant value of entropy density
−R but gradually increasing 4-volume so that the analog of second law stating the increase
of −RV4 would hold true.

3. The interpretation of −R > 0 as negentropy density assignable to entanglement is also
possible and is consistent with the interpretation in terms of second law. This interpretation
would only change the sign factor ε in the proposed formula. Otherwise the above arguments
would remain as such.

5.4 Could Correlation Functions, S-Matrix, And Coupling Constant
Evolution Be Coded The Statistical Properties Of Preferred Ex-
tremals?

How to calculate the correlation functions and coupling constant evolution has remained a basic
unresolved challenge. Generalized Feynman diagrams provide a powerful vision which however
does not help in practical calculations. Some big idea has been lacking.

Quantum classical correspondence states that all aspects of quantum states should have corre-
lates in the geometry of preferred extremals. In particular, various elementary particle propagators
should have a representation as properties of preferred extremals. This would allow to realize the
old dream about being able to say something interesting about coupling constant evolution al-
though it is not yet possible to calculate the M-matrices and U-matrix. The general structure of
U-matrix is however understood [K22]. Hitherto everything that has been said about coupling
constant evolution has been rather speculative arguments except for the general vision that it re-
duces to a discrete evolution defined by p-adic length scales. General first principle definitions are
however much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum
state should code for its properties. By quantum classical correspondence these correlation func-
tions should have counterparts in the geometry of preferred extremals. Even more: these classical
counterparts for a given preferred extremal ought to be identical with the quantum correlation func-
tions for the superposition of preferred extremals. This correspondence could be called quantum
ergodicity by its analogy with ordinary ergodicity stating that the member of ensemble becomes
representative of ensemble.
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This principle would be a quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This symmetry
principle analogous to holography might allow to fix S-matrix uniquely even in the case that the
hermitian square root of the density matrix appearing in the M-matrix would lead to a breaking
of quantum ergodicity as also 4-D spin glass degeneracy suggests.

This principle would allow to deduce correlation functions from the statistical properties of
single preferred extremal alone using just classical intuition. Also coupling constant evolution would
be coded by the statistical properties of preferred extremals. Quantum ergodicity would mean an
enormous simplification since one could avoid the horrible conceptual complexities involved with
the functional integrals over WCW .

This might of course be too optimistic guess. If a sub-algebra of symplectic algebra acts as gauge
symmmetries of the preferred extremals in the sense that corresponding Noether charges vanish,
it can quite well be that correlations functions correspond to averages for extremals belonging to
single conformal equivalence class.

1. The marvellous implication of quantum ergodicity would be that one could calculate every-
thing solely classically using the classical intuition - the only intuition that we have. Quantum
ergodicity would also solve the paradox raised by the quantum classical correspondence for
momentum eigenstates. Any preferred extremal in their superposition defining momentum
eigenstate should code for the momentum characterizing the superposition itself. This is
indeed possible if every extremal in the superposition codes the momentum to the properties
of classical correlation functions which are identical for all of them.

2. The only manner to possibly achieve quantum ergodicity is in terms of the statistical proper-
ties of the preferred extremals. It should be possible to generalize the ergodic theorem stating
that the properties of statistical ensemble are represented by single space-time evolution in
the ensemble of time evolutions. Quantum superposition of classical worlds would effectively
reduce to single classical world as far as classical correlation functions are considered. The
notion of finite measurement resolution suggests that one must state this more precisely by
adding that classical correlation functions are calculated in a given UV and IR resolutions
meaning UV cutoff defined by the smallest CD and IR cutoff defined by the largest CD
present.

3. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that
this quantum ergodic theorem must be broken. In the case of the ordinary spin classes
one has not only statistical average for a fixed Hamiltonian but a statistical average over
Hamiltonians. There is a probability distribution over the coupling parameters appearing in
the Hamiltonian. Maybe the quantum counterpart of this is needed to predict the physically
measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with
different classical correlation functions? This kind of average is indeed taken in density
matrix formalism. Or could it be that the square root of thermodynamics defined by ZEO
actually gives automatically rise to this average? The eigenvalues of the “hermitian square
root” of the density matrix would code for components of the state characterized by different
classical correlation functions. One could assign these contributions to different “phases”.

4. Quantum classical correspondence in statistical sense would be very much like holography
(now individual classical state represents the entire quantum state). Quantum ergodicity
would pose a rather strong constraint on quantum states. This symmetry principle could
actually fix the spectrum of zero energy states to a high degree and fix therefore the M-
matrices given by the product of hermitian square root of density matrix and unitary S-
matrix and unitary U-matrix constructible as inner products of M-matrices associated with
CDs with various size scales [K22].

5. In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the pos-
tulate that the space-time geometry provides a symbolic representation for the quantum
states and also for the contents of consciousness assignable to quantum jumps between quan-
tum states. Quantum ergodicity would realize this strongly self-referential looking condition.
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The positive and negative energy parts of zero energy state would be analogous to the initial
and final states of quantum jump and the classical correlation functions would code for the
contents of consciousness like written formulas code for the thoughts of mathematician and
provide a sensory feedback.

How classical correlation functions should be defined?

1. General Coordinate Invariance and Lorentz invariance are the basic constraints on the defi-
nition. These are achieved for the space-time regions with Minkowskian signature and 4-D
M4 projection if linear Minkowski coordinates are used. This is equivalent with the contrac-
tion of the indices of tensor fields with the space-time projections of M4 Killing vector fields
representing translations. Accepting ths generalization, there is no need to restrict oneself
to 4-D M4 projection and one can also consider also Euclidian regions identifiable as lines of
generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2 Killing
vector fields can be projected to space-time surface and give a representation for classical
gluon fields. These in turn can be contracted with M4 Killing vectors giving rise to gluon
fields as analogs of graviton fields but with second polarization index replaced with color
index.

2. The standard definition for the correlation functions associated with classical time evolution is
the appropriate starting point. The correlation function GXY (τ) for two dynamical variables
X(t) and Y (t) is defined as the average GXY (τ) =

∫
T
X(t)Y (t + τ)dt/T over an interval of

length T , and one can also consider the limit T →∞. In the recent case one would replace τ
with the difference m1 −m2 = m of M4 coordinates of two points at the preferred extremal
and integrate over the points of the extremal to get the average. The finite time interval T is
replaced with the volume of causal diamond in a given length scale. Zero energy state with
given quantum numbers for positive and negative energy parts of the state defines the initial
and final states between which the fields appearing in the correlation functions are defined.

3. What correlation functions should be considered? Certainly one could calculate correlation
functions for the induced spinor connection given electro-weak propagators and correlation
functions for CP2 Killing vector fields giving correlation functions for gluon fields using
the description in terms of Killing vector fields. If one can uniquely separate from the
Fourier transform uniquely a term of form Z/(p2 −m2) by its momentum dependence, the
coefficient Z can be identified as coupling constant squared for the corresponding gauge
potential component and one can in principle deduce coupling constant evolution purely
classically. One can imagine of calculating spinorial propagators for string world sheets in the
same manner. Note that also the dependence on color quantum numbers would be present so
that in principle all that is needed could be calculated for a single preferred extremal without
the need to construct QFT limit and to introduce color quantum numbers of fermions as spin
like quantum numbers (color quantum numbers corresponds to CP2 partial wave for the tip
of the CD assigned with the particle).

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion
of quantum ergodicity could however be one of the really deep ideas about coupling constant evolu-
tion comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity (briefly
QE) would also state something extremely non-trivial also about the construction of correlation
functions and S-matrix. Because this principle is so new, the rest of the chapter does not yet
contain any applications of QE. This should not lead the reader to under-estimate the potential
power of QE.
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6 About Deformations Of Known Extremals Of Kähler Ac-
tion

I have done a considerable amount of speculative guesswork to identify what I have used to call
preferred extremals of Kähler action. The difficulty is that the mathematical problem at hand is
extremely non-linear and that I do not know about existing mathematical literature relevant to the
situation. One must proceed by trying to guess the general constraints on the preferred extremals
which look physically and mathematically plausible. The hope is that this net of constraints could
eventually chrystallize to Eureka! Certainly the recent speculative picture involves also wrong
guesses. The need to find explicit ansatz for the deformations of known extremals based on some
common principles has become pressing. The following considerations represent an attempt to
combine the existing information to achieve this.

6.1 What Might Be The Common Features Of The Deformations Of
Known Extremals

The dream is to discover the deformations of all known extremals by guessing what is common to
all of them. One might hope that the following list summarizes at least some common features.

6.1.1 Effective three-dimensionality at the level of action

1. Holography realized as effective 3-dimensionality also at the level of action requires that it
reduces to 3-dimensional effective boundary terms. This is achieved if the contraction jαAα
vanishes. This is true if jα vanishes or is light-like, or if it is proportional to instanton current
in which case current conservation requires that CP2 projection of the space-time surface is
3-dimensional. The first two options for j have a realization for known extremals. The status
of the third option - proportionality to instanton current - has remained unclear.

2. As I started to work again with the problem, I realized that instanton current could be
replaced with a more general current j = ∗B ∧ J or concretely: jα = εαβγδBβJγδ, where
B is vector field and CP2 projection is 3-dimensional, which it must be in any case. The
contractions of j appearing in field equations vanish automatically with this ansatz.

3. Almost topological QFT property in turn requires the reduction of effective boundary terms
to Chern-Simons terms: this is achieved by boundary conditions expressing weak form of
electric magnetic duality. If one generalizes the weak form of electric-magnetic duality to
J = Φ ∗ J one has B = dΦ and j has a vanishing divergence for 3-D CP2 projection. This
is clearly a more general solution ansatz than the one based on proportionality of j with
instanton current and would reduce the field equations in concise notation to Tr(THk) = 0.

4. Any of the alternative properties of the Kähler current implies that the field equations reduce
to Tr(THk) = 0, where T and Hk are shorthands for Maxwellian energy momentum tensor
and second fundamental form and the product of tensors is obvious generalization of matrix
product involving index contraction.

6.1.2 Could Einstein’s equations emerge dynamically?

For jα satisfying one of the three conditions, the field equations have the same form as the equations
for minimal surfaces except that the metric g is replaced with Maxwell energy momentum tensor
T .

1. This raises the question about dynamical generation of small cosmological constant Λ: T =
Λg would reduce equations to those for minimal surfaces. For T = Λg Kähler-Dirac gamma
matrices would reduce to induced gamma matrices and the Kähler-Dirac operator would be
proportional to ordinary Dirac operator defined by the induced gamma matrices. One can
also consider weak form for T = Λg obtained by restricting the consideration to a sub-space
of tangent space so that space-time surface is only “partially” minimal surface but this option
is not so elegant although necessary for other than CP2 type vacuum extremals.
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2. What is remarkable is that T = Λg implies that the divergence of T which in the general case
equals to jβJαβ vanishes. This is guaranteed by one of the conditions for the Kähler current.
Since also Einstein tensor has a vanishing divergence, one can ask whether the condition
to T = κG + Λg could the general condition. This would give Einstein’s equations with
cosmological term besides the generalization of the minimal surface equations. GRT would
emerge dynamically from the non-linear Maxwell’s theory although in slightly different sense
as conjectured [K32] ! Note that the expression for G involves also second derivatives of the
embedding space coordinates so that actually a partial differential equation is in question. If
field equations reduce to purely algebraic ones, as the basic conjecture states, it is possible
to have Tr(GHk) = 0 and Tr(gHk) = 0 separately so that also minimal surface equations
would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents. The re-
cent proposal would give the analog of ordinary Einstein equations as a dynamical constraint
relating Maxwellian energy momentum tensor to Einstein tensor and metric.

3. Minimal surface property is physically extremely nice since field equations can be interpreted
as a non-linear generalization of massless wave equation: something very natural for non-
linear variant of Maxwell action. The theory would be also very “stringy” although the
fundamental action would not be space-time volume. This can however hold true only for
Euclidian signature. Note that for CP2 type vacuum extremals Einstein tensor is propor-
tional to metric so that for them the two options are equivalent. For their small deformations
situation changes and it might happen that the presence of G is necessary. The GRT limit of
TGD discussed in [K32] [L2] indeed suggests that CP2 type solutions satisfy Einstein’s equa-
tions with large cosmological constant and that the small observed value of the cosmological
constant is due to averaging and small volume fraction of regions of Euclidian signature (lines
of generalized Feynman diagrams).

4. For massless extremals and their deformations T = Λg cannot hold true. The reason is that
for massless extremals energy momentum tensor has component T vv which actually quite
essential for field equations since one has Hk

vv = 0. Hence for massless extremals and their
deformations T = Λg cannot hold true if the induced metric has Hamilton-Jacobi structure
meaning that guu and gvv vanish. A more general relationship of form T = κG + ΛG can
however be consistent with non-vanishing T vv but require that deformation has at most 3-D
CP2 projection (CP2 coordinates do not depend on v).

5. The non-determinism of vacuum extremals suggest for their non-vacuum deformations a
conflict with the conservation laws. In, also massless extremals are characterized by a non-
determinism with respect to the light-like coordinate but like-likeness saves the situation.
This suggests that the transformation of a properly chosen time coordinate of vacuum ex-
tremal to a light-like coordinate in the induced metric combined with Einstein’s equations in
the induced metric of the deformation could allow to handle the non-determinism.

6.1.3 Are complex structure of CP2 and Hamilton-Jacobi structure of M4 respected
by the deformations?

The complex structure of CP2 and Hamilton-Jacobi structure of M4 could be central for the
understanding of the preferred extremal property algebraically.

1. There are reasons to believe that the Hermitian structure of the induced metric ((1, 1)
structure in complex coordinates) for the deformations of CP2 type vacuum extremals could
be crucial property of the preferred extremals. Also the presence of light-like direction is also
an essential elements and 3-dimensionality of M4 projection could be essential. Hence a good
guess is that allowed deformations of CP2 type vacuum extremals are such that (2, 0) and
(0, 2) components the induced metric and/or of the energy momentum tensor vanish. This
gives rise to the conditions implying Virasoro conditions in string models in quantization:

gξiξj = 0 , g
ξ
i
ξ
j = 0 , i, j = 1, 2 . (6.1)
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Holomorphisms of CP2 preserve the complex structure and Virasoro conditions are expected
to generalize to 4-dimensional conditions involving two complex coordinates. This means that
the generators have two integer valued indices but otherwise obey an algebra very similar to
the Virasoro algebra. Also the super-conformal variant of this algebra is expected to make
sense.

These Virasoro conditions apply in the coordinate space for CP2 type vacuum extremals.
One expects similar conditions hold true also in field space, that is for M4 coordinates.

2. The integrable decomposition M4(m) = M2(m)+E2(m) of M4 tangent space to longitudinal
and transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi structure-
could be a very general property of preferred extremals and very natural since non-linear
Maxwellian electrodynamics is in question. This decomposition led rather early to the in-
troduction of the analog of complex structure in terms of what I called Hamilton-Jacobi
coordinates (u, v, w,w) for M4. (u, v) defines a pair of light-like coordinates for the local
longitudinal space M2(m) and (w,w) complex coordinates for E2(m). The metric would not
contain any cross terms between M2(m) and E2(m): guw = gvw = guw = gvw = 0.

A good guess is that the deformations of massless extremals respect this structure. This
condition gives rise to the analog of the constraints leading to Virasoro conditions stating
the vanishing of the non-allowed components of the induced metric. guu = gvv = gww =
gww = guw = gvw = guw = gvw = 0. Again the generators of the algebra would involve
two integers and the structure is that of Virasoro algebra and also generalization to super
algebra is expected to make sense. The moduli space of Hamilton-Jacobi structures would be
part of the moduli space of the preferred extremals and analogous to the space of all possible
choices of complex coordinates. The analogs of infinitesimal holomorphic transformations
would preserve the modular parameters and give rise to a 4-dimensional Minkowskian analog
of Virasoro algebra. The conformal algebra acting on CP2 coordinates acts in field degrees
of freedom for Minkowskian signature.

6.1.4 Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically
conditions stating that the Maxwellian energy momentum tensor has no common index pairs with
the second fundamental form. For the deformations of CP2 type vacuum extremals T is a complex
tensor of type (1, 1) and second fundamental form Hk a tensor of type (2, 0) and (0, 2) so that
Tr(THk) = is true. This requires that second light-like coordinate of M4 is constant so that the
M4 projection is 3-dimensional. For Minkowskian signature of the induced metric Hamilton-Jacobi
structure replaces conformal structure. Here the dependence of CP2 coordinates on second light-
like coordinate of M2(m) only plays a fundamental role. Note that now T vv is non-vanishing (and
light-like). This picture generalizes to the deformations of cosmic strings and even to the case of
vacuum extremals.

6.2 What Small Deformations Of CP2 Type Vacuum Extremals Could
Be?

I was led to these arguments when I tried find preferred extremals of Kähler action, which would
have 4-D CP2 and M4 projections - the Maxwell phase analogous to the solutions of Maxwell’s
equations that I conjectured long time ago. It however turned out that the dimensions of the
projections can be (DM4 ≤ 3, DCP2

= 4) or (DM4 = 4, DCP2
≤ 3). What happens is essentially

breakdown of linear superposition so that locally one can have superposition of modes which have
4-D wave vectors in the same direction. This is actually very much like quantization of radiation
field to photons now represented as separate space-time sheets and one can say that Maxwellian
superposition corresponds to union of separate photonic space-time sheets in TGD.

Approximate linear superposition of fields is fundamental in standard physics framework and is
replaced in TGD with a linear superposition of effects of classical fields on a test particle topologi-
cally condensed simultaneously to several space-time sheets. One can say that linear superposition
is replaced with a disjoint union of space-time sheets. In the following I shall restrict the consid-
eration to the deformations of CP2 type vacuum extremals.
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6.2.1 Solution ansatz

I proceed by the following arguments to the ansatz.

1. Effective 3-dimensionality for action (holography) requires that action decomposes to van-
ishing jαAα term + total divergence giving 3-D “boundary” terms. The first term certainly
vanishes (giving effective 3-dimensionality) for

DβJ
αβ = jα = 0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed GRT
limit these equations are true.

2. How to obtain empty space Maxwell equations jα = 0? The answer is simple: assume self
duality or its slight modification:

J = ∗J

holding for CP2 type vacuum extremals or a more general condition

J = k ∗ J ,

In the simplest situation k is some constant not far from unity. * is Hodge dual involving 4-D
permutation symbol. k = constant requires that the determinant of the induced metric is
apart from constant equal to that of CP2 metric. It does not require that the induced metric
is proportional to the CP2 metric, which is not possible since M4 contribution to metric has
Minkowskian signature and cannot be therefore proportional to CP2 metric.

One can consider also a more general situation in which k is scalar function as a generalization
of the weak electric-magnetic duality. In this case the Kähler current is non-vanishing but
divergenceless. This also guarantees the reduction to Tr(THk) = 0. In this case however
the proportionality of the metric determinant to that for CP2 metric is not needed. This
solution ansatz becomes therefore more general.

3. Field equations reduce with these assumptions to equations differing from minimal surfaces
equations only in that metric g is replaced by Maxwellian energy momentum tensor T .
Schematically:

Tr(THk) = 0 ,

where T is the Maxwellian energy momentum tensor and Hk is the second fundamental
form - asymmetric 2-tensor defined by covariant derivative of gradients of embedding space
coordinates.

6.2.2 How to satisfy the condition Tr(THk) = 0?

It would be nice to have minimal surface equations since they are the non-linear generalization of
massless wave equations. It would be also nice to have the vanishing of the terms involving Kähler
current in field equations as a consequence of this condition. Indeed, T = κG+ Λg implies this. In
the case of CP2 vacuum extremals one cannot distinguish between these options since CP2 itself
is constant curvature space with G ∝ g. Furthermore, if G and g have similar tensor structure the
algebraic field equations for G and g are satisfied separately so that one obtains minimal surface
property also now. In the following minimal surface option is considered.

1. The first opton is achieved if one has

T = Λg .
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Maxwell energy momentum tensor would be proportional to the metric! One would have
dynamically generated cosmological constant! This begins to look really interesting since it
appeared also at the proposed GRT limit of TGD [L2] (see http://tinyurl.com/hzkldnb).
Note that here also non-constant value of Λ can be considered and would correspond to a
situation in which k is scalar function: in this case the the determinant condition can be
dropped and one obtains just the minimal surface equations.

2. Very schematically and forgetting indices and being sloppy with signs, the expression for T
reads as

T = JJ − g/4Tr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should be
proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on metric
and is constant.

For CP2 type vacuum extremals one obtains

T = −g + g = 0 .

Cosmological constant would vanish in this case.

3. Could it happen that for deformations a small value of cosmological constant is generated?

The condition would reduce to

JJ = (Λ− 1)g .

Λ must relate to the value of parameter k appearing in the generalized self-duality condition.
For the most general ansatz Λ would not be constant anymore.

This would generalize the defining condition for Kähler form

JJ = −g (i2 = −1 geometrically)

stating that the square of Kähler form is the negative of metric. The only modification
would be that index raising is carried out by using the induced metric containing also M4

contribution rather than CP2 metric.

4. Explicitly:

JαµJ
µ
β = (Λ− 1)gαβ .

Cosmological constant would measure the breaking of Kähler structure. By writing g = s+m
and defining index raising of tensors using CP2 metric and their product accordingly, this
condition can be also written as

Jm = (Λ− 1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional
to the CP2 metric. If k is scalar function, this condition can be dropped. Cosmological constant
would not be constant anymore but the dependence on k would drop out from the field equations
and one would hope of obtaining minimal surface equations also now. It however seems that the
dimension of M4 projection cannot be four. For 4-D M4 projection the contribution of the M2

part of the M4 metric gives a non-holomorphic contribution to CP2 metric and this spoils the field
equations.

For T = κG + Λg option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K32] [L2]. The interpretation in this case is that the average value
of cosmological constant is small since the portion of space-time volume containing generalized
Feynman diagrams is very small.

http://tinyurl.com/hzkldnb
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6.2.3 More detailed ansatz for the deformations of CP2 type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the induced
metric is apart from constant conformal factor the metric of CP2. This would guarantee self-duality
apart from constant factor and jα = 0. Metric would be in complex CP2 coordinates tensor of type
(1, 1) whereas CP2 Riemann connection would have only purely holomorphic or anti-holomorphic
indices. Therefore CP2 contributions in Tr(THk) would vanish identically. M4 degrees of freedom
however bring in difficulty. The M4 contribution to the induced metric should be proportional
to CP2 metric and this is impossible due to the different signatures. The M4 contribution to the
induced metric breaks its Kähler property but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of CP2 type vacuum
extremals is following.

1. Physical intuition suggests that M4 coordinates can be chosen so that one has integrable
decomposition to longitudinal degrees of freedom parametrized by two light-like coordinates
u and v and to transversal polarization degrees of freedom parametrized by complex co-
ordinate w and its conjugate. M4 metric would reduce in these coordinates to a direct
sum of longitudinal and transverse parts. I have called these coordinates Hamilton-Jacobi
coordinates.

2. w would be holomorphic function of CP2 coordinates and therefore satisfy the analog of
massless wave equation. This would give hopes about rather general solution ansatz. u and
v cannot be holomorphic functions of CP2 coordinates. Unless wither u or v is constant,
the induced metric would receive contributions of type (2, 0) and (0, 2) coming from u and
v which would break Kähler structure and complex structure. These contributions would
give no-vanishing contribution to all minimal surface equations. Therefore either u or v is
constant: the coordinate line for non-constant coordinate -say u- would be analogous to the
M4 projection of CP2 type vacuum extremal.

3. With these assumptions the induced metric would remain (1, 1) tensor and one might hope
that Tr(THk) contractions vanishes for all variables except u because the there are no com-
mon index pairs (this if non-vanishing Christoffel symbols for H involve only holomorphic
or anti-holomorphic indices in CP2 coordinates). For u one would obtain massless wave
equation expressing the minimal surface property.

4. If the value of k is constant the determinant of the induced metric must be proportional to
the determinant of CP2 metric. The induced metric would contain only the contribution
from the transversal degrees of freedom besides CP2 contribution. Minkowski contribution
has however rank 2 as CP2 tensor and cannot be proportional to CP2 metric. It is however
enough that its determinant is proportional to the determinant of CP2 metric with constant
proportionality coefficient. This condition gives an additional non-linear condition to the
solution. One would have wave equation for u (also w and its conjugate satisfy massless
wave equation) and determinant condition as an additional condition.

The determinant condition reduces by the linearity of determinant with respect to its rows
to sum of conditions involved 0, 1, 2 rows replaced by the transversal M4 contribution to
metric given if M4 metric decomposes to direct sum of longitudinal and transversal parts.
Derivatives with respect to derivative with respect to particular CP2 complex coordinate
appear linearly in this expression they can depend on u via the dependence of transversal
metric components on u. The challenge is to show that this equation has (or does not have)
non-trivial solutions.

5. If the value of k is scalar function the situation changes and one has only the minimal surface
equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations are
in question, equations reduces to non-linear generalizations of Euclidian massless wave equations,
and possibly space-time dependent cosmological constant pops up dynamically. These properties
are true also for the GRT limit of TGD [L2] (see http://tinyurl.com/hzkldnb).

http://tinyurl.com/hzkldnb
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6.3 Hamilton-Jacobi Conditions In Minkowskian Signature

The maximally optimistic guess is that the basic properties of the deformations of CP2 type
vacuum extremals generalize to the deformations of other known extremals such as massless ex-
tremals, vacuum extremals with 2-D CP2 projection which is Lagrangian manifold, and cosmic
strings characterized by Minkowskian signature of the induced metric. These properties would be
following.

1. The recomposition ofM4 tangent space to longitudinal and transversal parts giving Hamilton-
Jacobi structure. The longitudinal part has hypercomplex structure but the second light-like
coordinate is constant: this plays a crucial role in guaranteeing the vanishing of contractions
in Tr(THk). It is the algebraic properties of g and T which are crucial. T can however have
light-like component T vv. For the deformations of CP2 type vacuum extremals (1, 1) struc-
ture is enough and is guaranteed if second light-like coordinate of M4 is constant whereas w
is holomorphic function of CP2 coordinates.

2. What could happen in the case of massless extremals? Now one has 2-D CP2 projection in
the initial situation and CP2 coordinates depend on light-like coordinate u and single real
transversal coordinate. The generalization would be obvious: dependence on single light-
like coordinate u and holomorphic dependence on w for complex CP2 coordinates. The
constraint is T = Λg cannot hold true since T vv is non-vanishing (and light-like). This
property restricted to transversal degrees of freedom could reduce the field equations to
minimal surface equations in transversal degrees of freedom. The transversal part of energy
momentum tensor would be proportional to metric and hence covariantly constant. Gauge
current would remain light-like but would not be given by j = ∗dφ ∧ J . T = κG+ Λg seems
to define the attractive option.

It therefore seems that the essential ingredient could be the condition

T = κG+ λg ,

which has structure (1, 1) in both M2(m) and E2(m) degrees of freedom apart from the presence
of T vv component with deformations having no dependence on v. If the second fundamental form
has (2, 0)+(0, 2) structure, the minimal surface equations are satisfied provided Kähler current
satisfies on of the proposed three conditions and if G and g have similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints leading
to Virasoro conditions in quantization to give

guu = 0 , gvv = 0 , gww = 0 , gww = 0 . (6.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for which
an identification in terms of non-local Yangian symmetry [A10] [B11, B9, B10] has been proposed
[K30]. The number of conditions is four and the same as the number of independent field equations.
One can consider similar conditions also for the energy momentum tensor T but allowing non-
vanishing component T vv if deformations has no v-dependence. This would solve the field equations
if the gauge current vanishes or is light-like. On this case the number of equations is 8. First order
differential equations are in question and they can be also interpreted as conditions fixing the
coordinates used since there is infinite number of ways to choose the Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations in the
linear case by writing the solution as a superposition of left and right propagating solutions:

ξk = fk+(u,w) + fk+(v, w) . (6.3)

This could guarantee that second fundamental form is of form (2, 0)+(0, 2) in both M2 and E2

part of the tangent space and these terms if Tr(THk) vanish identically. The remaining terms
involve contractions of Tuw, Tuw and T vw, T vw with second fundamental form. Also these terms
should sum up to zero or vanish separately. Second fundamental form has components coming
from fk+ and fk−
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Second fundamental form Hk has as basic building bricks terms Ĥk given by

Ĥk
αβ = ∂α∂βh

k +
(
k
l m

)
∂αh

l∂βh
m . (6.4)

For the proposed ansatz the first terms give vanishing contribution to Hk
uv. The terms containing

Christoffel symbols however give a non-vanishing contribution and one can allow only fk+ or fk− as
in the case of massless extremals. This reduces the dimension of CP2 projection to D = 3.

What about the condition for Kähler current? Kähler form has components of type Jww
whose contravariant counterpart gives rise to space-like current component. Juw and Juw give
rise to light-like currents components. The condition would state that the Jww is covariantly
constant. Solutions would be characterized by a constant Kähler magnetic field. Also electric field
is represent. The interpretation both radiation and magnetic flux tube makes sense.

6.4 Deformations Of Cosmic Strings

In the physical applications it has been assumed that the thickening of cosmic strings to Kähler
magnetic flux tubes takes place. One indeed expects that the proposed construction generalizes
also to the case of cosmic strings having the decomposition X4 = X2 × Y 2 ⊂ M4 × CP2, where
X2 is minimal surface and Y 2 a complex homologically non-trivial sub-manifold of CP2. Now the
starting point structure is Hamilton-Jacobi structure for M2

m × Y 2 defining the coordinate space.

1. The deformation should increase the dimension of either CP2 or M4 projection or both.
How this thickening could take place? What comes in mind that the string orbits X2 can
be interpreted as a distribution of longitudinal spaces M2(x) so that for the deformation w
coordinate becomes a holomorphic function of the natural Y 2 complex coordinate so that M4

projection becomes 4-D but CP2 projection remains 2-D. The new contribution to the X2

part of the induced metric is vanishing and the contribution to the Y 2 part is of type (1, 1) and
the ansatz T = κG+Λg might be needed as a generalization of the minimal surface equations
The ratio of κ and G would be determined from the form of the Maxwellian energy momentum
tensor and be fixed at the limit of undeformed cosmic strong to T = (ag(Y 2)− bg(Y 2). The
value of cosmological constant is now large, and overall consistency suggests that T = κG+Λg
is the correct option also for the CP2 type vacuum extremals.

2. One could also imagine that remaining CP2 coordinates could depend on the complex coor-
dinate of Y 2 so that also CP2 projection would become 4-dimensional. The induced metric
would receive holomorphic contributions in Y 2 part. As a matter fact, this option is already
implied by the assumption that Y 2 is a complex surface of CP2.

6.5 Deformations Of Vacuum Extremals?

What about the deformations of vacuum extremals representable as maps from M4 to CP2?

1. The basic challenge is the non-determinism of the vacuum extremals. One should perform
the deformation so that conservation laws are satisfied. For massless extremals there is
also non-determinism but it is associated with the light-like coordinate so that there are
no problems with the conservation laws. This would suggest that a properly chosen time
coordinate consistent with Hamilton-Jacobi decomposition becomes light-like coordinate in
the induced metric. This poses a conditions on the induced metric.

2. Physical intuition suggests that one cannot require T = Λg since this would mean that
the rank of T is maximal whereas the original situation corresponds to the vanishing of T .
For small deformations rank two for T looks more natural and one could think that T is
proportional to a projection of metric to a 2-D subspace. The vision about the long length
scale limit of TGD is that Einstein’s equations are satisfied and this would suggest T = kG
or T = κG+Λg. The rank of T could be smaller than four for this ansatz and this conditions
binds together the values of κ and G.
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3. These extremals have CP2 projection which in the generic case is 2-D Lagrangian sub-
manifold Y 2. Again one could assume Hamilton-Jacobi coordinates for X4. For CP2 one
could assume Darboux coordinates (Pi, Qi), i = 1, 2, in which one has A = PidQ

i, and
that Y 2 ⊂ CP2 corresponds to Qi = constant. In principle Pi would depend on arbitrary
manner on M4 coordinates. It might be more convenient to use as coordinates (u, v) for M2

and (P1, P2) for Y 2. This covers also the situation when M4 projection is not 4-D. By its
2-dimensionality Y 2 allows always a complex structure defined by its induced metric: this
complex structure is not consistent with the complex structure of CP2 (Y 2 is not complex
sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y 2 is a 2-dimensional
sub-manifold X2 of X4 and defines also 2-D sub-manifold of M4. The following picture
suggests itself. The projection of X2 to M4 can be seen for a suitable choice of Hamilton-
Jacobi coordinates as an analog of Lagrangian sub-manifold in M4 that is as surface for
which v and Im(w) vary and u and Re(w) are constant. X2 would be obtained by allowing u
and Re(w) to vary: as a matter fact, (P1, P2) and (u,Re(w)) would be related to each other.
The induced metric should be consistent with this picture. This would requires guRe(w) = 0.

For the deformations Q1 and Q2 would become non-constant and they should depend on
the second light-like coordinate v only so that only guu and guw and guw gw,w and gw,w
receive contributions which vanish. This would give rise to the analogs of Virasoro conditions
guaranteeing that T is a tensor of form (1, 1) in both M2 and E2 indices and that there are
no cross components in the induced metric. A more general formulation states that energy
momentum tensor satisfies these conditions. The conditions on T might be equivalent with
the conditions for g and G separately.

4. Einstein’s equations provide an attractive manner to achieve the vanishing of effective 3-
dimensionality of the action. Einstein equations would be second order differential equations
and the idea that a deformation of vacuum extremal is in question suggests that the dynamics
associated with them is in directions transversal to Y 2 so that only the deformation is dictated
partially by Einstein’s equations.

5. Lagrangian manifolds do not involve complex structure in any obvious manner. One could
however ask whether the deformations could involve complex structure in a natural manner
in CP2 degrees of freedom so that the vanishing of gww would be guaranteed by holomorphy
of CP2 complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the complex
structure should relate to the geometry of CP2 somehow. The complex coordinate defined
by say z = P1 + iQ1 for the deformation suggests itself. This would suggest that at the
limit when one puts Q1 = 0 one obtains P1 = P1(Re(w)) for the vacuum extremals and the
deformation could be seen as an analytic continuation of real function to region of complex
plane. This is in spirit with the algebraic approach. The vanishing of Kähler current requires
that the Kähler magnetic field is covariantly constant: DzJ

zz = 0 and DzJ
zz = 0 .

6. One could consider the possibility that the resulting 3-D sub-manifold of CP2 can be regarded
as contact manifold with induced Kähler form non-vanishing in 2-D section with natural
complex coordinates. The third coordinate variable- call it s- of the contact manifold and
second coordinate of its transversal section would depend on time space-time coordinates
for vacuum extremals. The coordinate associated with the transversal section would be
continued to a complex coordinate which is holomorphic function of w and u.

7. The resulting thickened magnetic flux tubes could be seen as another representation of Kähler
magnetic flux tubes: at this time as deformations of vacuum flux tubes rather than cosmic
strings. For this ansatz it is however difficult to imagine deformations carrying Kähler electric
field.

6.6 About The Interpretation Of The Generalized Conformal Algebras

The long-standing challenge has been finding of the direct connection between the super-conformal
symmetries assumed in the construction of the geometry of the “world of classical worlds” ( WCW )
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and possible conformal symmetries of field equations. 4-dimensionality and Minkowskian signature
have been the basic problems. The recent construction provides new insights to this problem.

1. In the case of string models the quantization of the Fourier coefficients of coordinate variables
of the target space gives rise to Kac-Moody type algebra and Virasoro algebra generators are
quadratic in these. Also now Kac-Moody type algebra is expected. If one were to perform
a quantization of the coefficients in Laurents series for complex CP2 coordinates, one would
obtain interpretation in terms of su(3) = u(2)+t decomposition, where t corresponds to CP3:
the oscillator operators would correspond to generators in t and their commutator would give
generators in u(2). SU(3)/SU(2) coset representation for Kac-Moody algebra would be in
question. Kac-Moody algebra would be associated with the generators in both M4 and CP2

degrees of freedom. This kind of Kac-Moody algebra appears in quantum TGD.

2. The constraints on induced metric imply a very close resemblance with string models and a
generalization of Virasoro algebra emerges. An interesting question is how the two algebras
acting on coordinate and field degrees of freedom relate to the super-conformal algebras
defined by the symplectic group of δM4

+ ×CP2 acting on space-like 3-surfaces at boundaries
of CD and to the Kac-Moody algebras acting on light-like 3-surfaces. It has been conjectured
that these algebras allow a continuation to the interior of space-time surface made possible
by its slicing by 2-surfaces parametrized by 2-surfaces. The proposed construction indeed
provides this kind of slicings in both M4 and CP2 factor.

3. In the recent case, the algebras defined by the Fourier coefficients of field variables would be
Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would be expressed
in terms of the Kac-Moody algebra in the standard Sugawara construction applied in string
models. The algebra acting on field space would be analogous to the conformal algebra
assignable to the symplectic algebra so that also symplectic algebra is present. Stringy
pragmatist could imagine quantization of symplectic algebra by replacing CP2 coordinates
in the expressions of Hamiltonians with oscillator operators. This description would be
counterpart for the construction of spinor harmonics in WCW and might provide some useful
insights.

4. For given type of space-time surface either CP2 or M4 corresponds to Kac-Moody algebra but
not both. From the point of view of quantum TGD it looks as that something were missing.
An analogous problem was encountered at GRT limit of TGD [L2]. When Euclidian space-
time regions are allowed Einstein-Maxwell action is able to mimic standard model with a
surprising accuracy but there is a problem: one obtains either color charges or M4 charges
but not both. Perhaps it is not enough to consider either CP2 type vacuum extremal or its
exterior but both to describe particle: this would give the direct product of the Minkowskian
and Euclidian algebras acting on tensor product. This does not however seem to be consistent
with the idea that the two descriptions are duality related (the analog of T-duality).

7 About TGD counterparts of classical field configurations
in Maxwell’s theory

Classical physics is an exact part of TGD so that the study of extremals of dimensionally reduces 6-
D Kähler action can provide a lot of intuition about quantum TGD and see how quantum-classical
correspondence is realized. In the following I will try to develop further understanding about TGD
counterparts of the simplest field configurations in Maxwell’s theory.

In the sequel CP2 type extremals will be considered from the point of view of quantum criticality
and the view about string world sheets, their lightlike boundaries as carriers of fermion number,
and the ends as point like particles as singularities acting as sources for minimal surfaces satisfying
non-linear generalization of d’Alembert equation.

I will also discuss the delicacies associated with M4 Kähler structure and its connection with
what I call Hamilton-Jacobi structure and with M8 approach based on classical number fields. I
will argue that the breaking of CP symmetry associated with M4 Kähler structure is small without
any additional assumptions: this is in contrast with the earlier view.
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The difference between TGD and Maxwell’s theory and consider the TGD counterparts of
simple em field configurations will be also discussed. Topological field quantization provides a
geometric view about formation of atoms as bound states based on flux tubes as correlates for
binding, and allows to identify space-time correlates for second quantization. These considerations
force to take seriously the possibility that preferred extremals besides being minimal surfaces also
possess generalized holomorphy reducing field equations to purely algebraic conditions and that
minimal surfaces without this property are not preferred extremals. If so, at microscopic level
only CP2 type extremals, massless extremals, and string like objects and their deformations would
exist as preferred extremals and serve as building bricks for the counterparts of Maxwellian field
configurations and the counterparts of Maxwellian field configurations such as Coulomb potential
would emerge only at the QFT limit.

7.1 About differences between Maxwell’s ED and TGD

TGD differs from Maxwell’s theory in several important aspects.

1. The TGD counterparts of classical electroweak gauge potentials are induced from component
of spinor connection of CP2. Classical color gauge potentials corresponds to the projections
of Killing vector fields of color isometries.

2. Also M4 has Kähler potential, which is induced to space-time surface and gives rise to an
additional U(1) force. The couplings of M4 gauge potential to quarks and leptons are of
same sign whereas the couplings of CP2 Kähler potential to B and L are of opposite sign so
that the contributions to 6-D Kähler action reduce to separate terms without interference
term.

Coupling to induced M4 Kähler potential implies CP breaking. This could explain the small
CP breaking in hadronic systems and also matter antimatter asymmetry in which there are
opposite matter-antimatter asymmetries inside cosmic strings and their exteriors respectively.
A priori it is however not obvious that the CP breaking is small.

3. General coordinate invariance implies that there are only 4 local field like degrees of freedom
so that for extremals with 4-D M4 projection corresponding to GRT space-time both metric,
electroweak and color gauge potentials can be expressed in terms four CP2 coordinates and
their gradients. Preferred extremal property realized as minimal surface condition means
that field equations are satisfied separately for the 4-D Kähler and volume action reduces the
degrees of freedom further.

If the CP2 part of Kähler form is non-vanishing, minimal surface conditions can be guar-
anteed by a generalization of holomorphy realizing quantum criticality (satisfied by known
extremals). One can say that there is no dependence on coupling parameters. If CP2 part
of Kähler form vanishes identically, the minimal surface condition need not be guaranteed
by holomorphy. It is not at all clear whether quantum criticality and preferred extremal
property allow this kind of extremals.

4. Supersymplectic symmetries act as isometries of “world of classical worlds” (WCW). In a well-
defined sense supersymplectic symmetry generalizes 2-D conformal invariance to 4-D context.
The key observation here is that light-like 3-surfaces are metrically 2-D and therefore allow
extended conformal invariance.

Preferred extremal property realizing quantum criticality boils down to a condition that
sub-algebra of SSA and its commutator with SSA annihilate physical states and that corre-
sponding Noether charges vanish. These conditions could be equivalent with minimal surface
property. This implies that the set of possible field patterns is extremely restricted and one
might talk about “archetypal” field patterns analogous to partial waves or plane waves in
Maxwell’s theory.

5. Linear superposition of the archetypal field patterns is not possible. TGD however implies
the notion of many-sheeted space-time and each sheet can carry its own field pattern. A test
particle which is space-time surface itself touches all these sheets and experiences the sum
of the effects caused by fields at various sheets. Effects are superposed rather than fields
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and this is enough. This means weakening of the superposition principle of Maxwell’s theory
and the linear superposition of fields at same space-time sheet is replaced with set theoretic
union of space-time sheets carrying the field patterns whose effects superpose.

This observation is also essential in the construction of QFT limit of TGD. The gauge po-
tentials in standard model and gravitational field in general relativity are superpositions of
those associated with space-time sheets idealized with slightly curved piece of Minkowski
space M4.

6. An important implication is that each system has field identity - field body or magnetic body
(MB). In Maxwell’s theory superposition of fields coming from different sources leads to a
loss of information since one does not anymore now which part of field came from particular
source. In TGD this information loss does not happen and this is essential for TGD inspired
quantum biology.

Remark: An interesting algebraic analog is the notion of co-algebra. Co-product is analo-
gous to reversal of product AB= C in the sense that it assigns to C and a linear combination
of products

∑
Ai ⊗ Bi such that AiBi = C. Quantum groups and co-algebras are indeed

important in TGD and it might be that there is a relationship. In TGD inspired quantum
biology magnetic body plays a key role as an intentional agent receiving sensory data from
biological body and using it as motor instrument.

7. I have already earlier considered a space-time correlate for second quantization in terms of
sheets of covering for heff = nh0. In [L5] it is proposed that n factorizes as n = n1n2
such that n1 (n2) is the number sheets for space-time surface as covering of CP2 (M4).
One could have quantum mechanical linear superposition of space-time sheets, each with a
particular field pattern. This kind state would correspond to single particle state created by
quantum field in QFT limit. For instance, one could have spherical harmonic for orientations
of magnetic flux tube or electric flux tube.

One could also have superposition of configurations containing several space-time sheets
simultaneously as analogs of many-boson states. Many-sheeted space-time would correspond
to this kind many-boson states. Second quantization in quantum field theory (QFT) could
be seen as an algebraic description of many-sheetedness having no obvious classical correlate
in classical QFT.

8. Flux tubes should be somehow different for gravitational fields, em fields, and also weak and
color gauge fields. The value of n = n1n2 [L5] for gravitational flux tubes is very large by
Nottale formula ~eff = ~gr = GMm/v0. The value of n2 for gravitational flux tubes is
n2 ∼ 107 if one accepts the formula G = R2/n2~. For em fields much smaller values of n
and therefore of n2 are suggestive. There the value of n measuring in adelic physics algebraic
complexity and evolutionary level would distinguish between gravitational and em flux tubes.

Large value of n would mean quantum coherence in long scales. For gravitation this makes
sense since screening is absent unlike for gauge interactions. Note that the large value of
heff = hgr implies that αem = e2/4π~eff is extremely small for gravitational flux tubes so
that they would indeed be gravitational in an excellent approximation.

n would be the dimension of extension of rationals involved and n2 would be the number
space-time sheets as covering of M4. If this picture is correct, gravitation would correspond
to much larger algebraic complexity and much larger value of Planck constant. This conforms
with the intuition that gravitation plays essential role in the quantum physics of living matter.

There are also other number theoretic characteristics such as ramified primes of the extension
identifiable as preferred p-adic primes in turn characterizing elementary particle. Also flux
tubes mediating weak and strong interactions should allow characterization in terms of num-
ber theoretic parameters. There are arguments that in atomic physics one has h = 6h0. Since
the quantum coherence scale of hadrons is smaller than atomic scale, one can ask whether
one could have heff < h.
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7.2 CP2 type extremals as ultimate sources of fields and singularities

CP2 type extremals have Euclidian signature of induced metric and therefore represent the most
radical deviation from Maxwell’s ED, gauge theories, and GRT. CP2 type extremal with light-
like geodesic as M4 projection represents a model for wormhole contact. The light-like orbit of
partonic 2-surface correspond to boundary between wormhole contact and Minkowskian region and
is associated with both throats of wormhole contact. The throats of wormhole contact can carry
part of a boundary of string world sheet connecting the partonic orbits associated with different
particles. These light-like lines can carry fermion number and would correspond to lines of TGD
counterparts of twistor diagrams.

These world lines would correspond to singularities for the minimal surface equations analogous
to sources of massless vector fields carrying charge [L4, L8]. These singularities would serve as
ultimate sources of classical em fields. Various currents would consist of wormhole throat pairs
representing elementary particle and carrying charges at the partonic orbits. Two-sheetedness is
essential and could be interpreted in terms of a double covering formed by space-time sheet glued
along their common boundary. This necessary since space-time sheet has a finite size being not
continuable beyond certain minimal size as preferred extremal since some of the real coordinates
would become complex.

7.2.1 Quantum criticality for CP2 type extremals

TGD predicts a hierarchy of quantum criticalities. The increase in criticality means that some
space-time sheets for space-time surface regarded as a covering with sheets related by Galois group
of extension of rationals degenerate to single sheet. The action of Galois group would reduce to
that for its subgroup.

This is analogous to the degeneration of some roots of polynomial to single root and in M8

representation space-time sheets are indeed quite concretely roots of octonionic polymomial defined
by vanishing of real or imaginary part in the decomposition o = q1 + iq2 of octonion to a sum
quaternionic real and imaginary parts.

The hierarchy of criticalities is closely related to the hierarchy of Planck constants heff/h0 =
n = n1n2 , where n1 corresponds to number of sheets as covering over CP2 and n2 as covering
over M4. One can also consider special cases in which M4 projection has dimension D < 4. The
proposal is that n corresponds to the dimension of Galois group for extension of rationals defining
the level of dark matter hierarchy. If n is prime, one has either n1 = 1 or n2 = 1.

It seems that the range of n2 is rather limited since the expression for Newton’s constant as
G = R2/n2~ varies in rather narrow range. If the covering has symmetries assignable to some
discrete subgroup of SU(3) acting as isometries of CP2 this could be understood. The increase of
criticality could mean that n1 or n2 or both are reduced.

What is the position of CP2 type extremals in the hierarchies of Planck constants and quantum
criticalities?

1. Consider first n2. CP2 type extremal have 1-D geodesic line as M4 projection. The light-like
geodesic as 1-D structure could be interpreted as covering for which two geodesic lines along
the orbits of opposite throats of wormhole contact form a kind of time loop. In this case one
would have n2 = 2 and one could have n = 2p, p prime.

In this sense CP2 type extremal or at least its core would be maximally critical. Deformations
replacing the light-like geodesic as projection with higher-D region of M4 presumably reduce
criticality and one has n2 > 2 is obtained. Whether this is possible inside wormhole contact
is not clear. One can imagine that as one approaches partonic 2-surface, the criticality and
degeneration increase in CP2 degrees of freedom step by step and reach maximum in its core.
This would be like realization of Thom’s catastrophe involving parts with various degrees of
criticalities.

At the flux tubes mediating gravitational interaction n2 ∼ 107 would hold true in the exte-
rior of associated CP2 type extremals. This would suggests that CP2 type extremals have
maximal criticality in M4 degrees of freedom and M4 covering reduces to 2-fold covering for
wormhole contacts.
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2. What about criticality as n1-fold covering of CP2. This covering corresponds to a situation
in which CP2 coordinates as field in M4 have given values of CP2 coordinates n1 times. A
lattice like structure formed by n1 wormhole contacts is suggestive. n1 can be arbitrary large
in principle and the gravitational Planck constant hgr/h0 = n1n2 would correspond to this
situation. Singularities would now correspond to a degeneration of some wormhole contacts to
single wormhole contact and could have interpretation in terms of fusion of particles to single
particle. One might perhaps interpret elementary particle reaction vertices as catastrophes.

Wormhole contacts can be regarded as CP2 type extremals having two holes corresponding to
the 3-D orbits of wormhole contacts. Mathematician would probably speak of a blow up. CP2

type extremals is glued to surrounding Minkowskian space-time sheets at the 3-D boundaries of
these holes. At the orbit of partonic 2-surface the induced 4-metric degenerates to 3-D metric and
4-D tangent space becomes metrically 3-D. Light-likeness of the M4 projection would correspond
to this. For CP2 type extremal 3 space-like M4 directions of Minkowskian region would transmute
to CP2 directions at the light-like geodesic and time direction would become light-like. This is like
graph of function for which tangent becomes vertical. For deformations of CP2 type extremals
this process could take place in several steps, one dimension in given step. This process could take
place inside CP2 or outside it depending on which order the transmutation of dimensions takes
place.

7.3 Delicacies associated with M4 Kähler structure

Twistor lift forces to assume that also M4 possesses the analog of Kähler form, and Minkowskian
signature does not prevent this [K8]. M4 Kähler structure breaks CP symmetry and provides
a very attractive manner to break CP symmetry and explain generation of matter antimatter
symmetry and CP breaking in hadron physics. The CP breaking is very small characterized by a
dimensionless number of order 10−9 identifiable as photon/baryon ratio. Can one understand the
smallness of CP breaking in TGD framework?

7.3.1 Hamilton-Jacobi structure

Hamilton-Jacobi structure [K15] can be seen as a generalization of complex structure and involves
a local but integrable selection of subspaces of various dimension for the tangent space of M4.
Integrability means that the selected subspaces are tangent spaces of a sub-manifold of M4. M8−H
duality allows to interpret this selection as being induced by a global selection of a hierarchy of
real, complex, and quaternionic subspaces associated with octonionic structure mapped to M4 in
such a way that this global selection becomes local at the level of H.

1. The 4-D analog of conformal invariance is due to very special conformal properties of light-
like 3-surfaces and light-cone boundary of M4. This raises hopes about construction of
general solution families by utilizing the generalized form of conformal invariance. Massless
extremals (MEs) in fact define extremely general solution family of this kind and involve
light-like direction vector k and polarization vector ε orthogonal to it defining decomposition
M4 = M2 ×E2. I have proposed that this decomposition generalizes to local but integrable
decomposition so that the distributions for M2 and E2 integrate to string world sheets and
partonic 2-surfaces.

2. One can have decomposition M4 = M2 ×E2 such that one has Minkowskian analog of con-
formal symmetry in M2. This decomposition is defined by the vectors k and ε. An unproven
conjecture is that these vectors can depend on point and the proposed Hamilton-Jacobi struc-
ture would mean a local decomposition of tangent space of M4 , which is integrable meaning
that local M2s integrate to string world sheet in M4 and local E2s integrate to closed 2-
surface as special case corresponds to partonic 2-surface. Generalizing the terminology, one
could talk about family of partonic surfaces. These decompositions could define families of
exremals.

An integrable decomposition of M4 to string world sheets and partonic 2-surfaces would
characterize the preferred extremals with 4-D M4 projection. Integrable distribution would
mean assignment of partonic 2-surface to each point of string world sheet and vice versa.
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3. M4 Kähler form defines unique decomposition M2 × E2. This is however not consistent
Lorentz invariance. To cure this problem one must allow moduli space for M4 Kähler forms
such that one can assign to each Hamilton-Jacobi structure M4 Kähler form defining the
corresponding integrable surfaces in terms of light-like vector and polarization vector whose
directions depend on point of M4.

This looks strange since the very idea is that the embedding space if unique. However, this
local decomposition could be secondary being associated only withH = M4×CP2 and emerge
in M8−H duality mapping of space-time surfaces X4 ⊂M8 to surfaces in M4×CP2. There
is a moduli space for octonion structures in M8 defined as a choice of preferred time axis M1

(rest system), preferred M2 defining hypercomplex place and preferred direction (light-like
vector), and quaternionic plane M2 × E2 (also polarization direction is included). Lorentz
boosts mixing the real and imaginary octonion coordinates and changing the direction of
time axis give rise to octonion structures not equivalent with the original one.

Thus the choice M1 ⊂ M2 ⊂ M4 = M2 × E2 ⊂ M8 is involved with the definition of
octonion structure and quaternionion structure. The image of this decomposition under
M8 − H duality mapping quaternionic tangent space of X4 ⊂ M8 containing M1 and M2

as sub-spaces would be such that the image of M1 ⊂ M2 ⊂ M2 × E2 depends on point of
M4 ⊂ H in integrable manner so that Hamilton-Jacobi structure in H is obtained.

Also CP2 allows the analog of Hamilton-Jacobi structure as a local decomposition integrating
to a family of geodesic spheres S2

I as analog of partonic 2-surfaces with complex structure and
having at each point as a fiber different S2

I - these spheres necessary intersect at single point. This
decomposition could correspond to the 4-D complex structure of CP2 and complex coordinates of
CP2 would serve as coordinates for the two geodesic spheres.

Could one imagine decompositions in which fiber is 2-D Lagrangian manifold - say S2
II - with

vanishing induced Kähler form and not possessing induced complex structure? S2
II does not have

complex structure as induced complex structure and is therefore analogous to M2. S2
II coordinates

would be functions of string world sheet coordinates (in special as analytic in hypercomplex sense
and describing wave propagating with light-velocity). S2

I coordinates would be analytic functions
of complex coordinates of partonic 2-surface.

7.3.2 CP breaking and M4 Kähler structure

The CP breaking induce by M4 Kähler structure should be small. Is this automatically true or
must one make some assumptions to achieve this.

Could one guarantee this by brute force by assuming M4 and CP2 parts of Kähler action to
have different normalizations. The proposal for the length scale evolution of cosmological constant
however relies on almost cancellation M4 induced Kähler forms of M4 and CP2 parts due to the
fact that the induced forms differ from each other by a rotation of the twistor sphere S2. The S2

part M4 × S2 Kähler for can have opposite with respect to T (CP2) = SU(3)/U(1)× U(1) Kähler
so that for trivial rotation the forms cancel completely. If the normalizations of Kähler actions
differ this cannot happen at the level of 4-D Kähler action.

To make progress, it is useful to look at the situation more concretely.

1. Kähler action is dimensionless. The square of Kähler form is metric so that JklJ
kl is dimen-

sionless. One must include to the 4-D Kähler action a dimensional factor 1/L4 to make it
dimensionless. The natural choice for L is as the radius R of CP2 geodesic sphere to radius of
twistor spheres for M4 and CP2. Note however that there is numerical constant involved and
if it is changed there must be a compensating change of Kähler coupling strength. Therefore
M4 contribution to action is proportional to the volume of M4 region using R4 as unit. This
contribution is very large for macroscopic regions of M4 unless self-duality of M4 Kähler
form would not cause cancellation (E2 −B2 = 0).

2. What about energy density? The näıve expectation based on Maxwell’s theory is that the
energy density assignable to M4 Kähler form is by self-duality proportional to E2+B2 = 2E2

and non-vanishing. By näıve order of magnitude estimate using Maxwellian formula for the
energy of this kind extremal is proportional to V ol3/R

4 and very large. Does this exclude
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these extremals or should one assume that they have very small volume? For macroscopic
lengths of one should assume extremely thin MEs with thickness smaller than R. Could
one have 2-fold covering formed by gluing to copies of very thin MEs together along their
boundaries. This does not look feasible.

Luckily, the Maxwellian intuition fails in TGD framework. The Noether currents associated
in presence of M4 Kähler action involve also a term coming from the variation of the induced
M4 Kähler form. This term guarantees that canonical momentum currents as H-vector
fields are orthogonal to the space-time surface. In the case of CP2 type extremals this
causes the cancellation of the canonical momentum currents associated with Kähler action
and corresponding contributions to conserved charges. The complete symmetry between M4

and CP2 and also physical intuition demanding that canonically imbedded M4 os vacuum
require that cancellation takes place also for M4 part so that only the term corresponding
to cosmological constant remains.

7.3.3 M4 Kähler form and CP breaking for various kinds of extremals

I have considered already earlier the proposal that CP breaking is due to M4 Kähler form [K8].
CP breaking is very small and the proposal inspired by the Cartesian product structure of the
embedding space and its twistor bundle and also by the similar decomposition of T (M4) = M4×S2

was that the coefficient of M4 part of Kähler action can be chosen to be much smaller than the
coefficient of CP2 part. The proposed mechanism giving rise to p-adic length scale evolution
of cosmological constant however requires that the coefficients of are identical. Luckily, the CP
breaking term is automatically very small as the following arguments based on the examination of
various kinds of extremals demonstrate.

1. For CP2 type extremals with light-like M4 geodesics as M4 projection the induced M4 Kähler
form vanishes so that there is no CP breaking. For small deformations CP2 type extremals
thickening the M4 projection the induced M4 Kähler form is non-vanishing. An attractive
hypothesis is that the small CP breaking parameter quantifies the order of magnitude of the
induced M4 Kähler form. This picture could allow to understand CP breaking of hadrons.

2. Canonically imbedded M4 is a minimal surface. A small breaking of CP symmetry is gen-
erated in small deformations of M4. In particular, for massless extremals (MEs) having
4-D M4 projection the action associated with M4 part of Kähler action vanishes at the M4

limit when the local polarization vector characterizing ME approaches zero. The small CP
breaking is characterized by the size of the polarization vector ε giving a contribution to the
induced metric. This conforms with the perturbative CP breaking.

3. String like objects of type X4 = X2 × Y 2 ⊂ M4 × CP2, where X2 is minimal surface and
Y 2 is 2-surface in CP2. The M4 projection contains only electric part but no magnetic part.
The M4 part of action is proportional to the volume Y 2 and therefore very small. This in
turn guarantees smallness of CP breaking effects.

(a) If Y 2 is homologically non-trivial (magnetic flux tube carries monopole flux), CP2 part
of action is large since action density is proportional 1/

√
det(g2) for Y 2 and therefore

large. The thickening of the flux tube however reduces the value of the action by flux
conservation as discussed already earlier.

M4 and CP2 contributions to the actions are of opposite sign but M4 contribution os
however very small as compared to CP2 contribution. One can look the situation in
M2×S2 coordinates. The transverse deformation would correspond to the dependence
of E2 coordinates on S2 coordinates. The induced Kähler form would give a contribution
to the S2 part of induced Kähler form whose size would characterize CP breaking.

(b) Y 2 can be also homologically trivial. In particular, for Y 2 = S2
II the CP2 contribution

to the total Kähler action vanishes and only the small M4 contribution proportional to
the area of Y 2 remains.
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7.4 About TGD counterparts for the simplest classical field patterns

What could be the TGD counterparts of typical configurations of classical fields? Since minimal
surface equation is a nonlinear generalization of massless field equations, one can hope that the
simplest solutions of Maxwell’s equations have TGD analogs. The strong non-linearity poses a
strong constraint, which can be solved if the extremal allows generalization of holomorphic structure
so that field equations are trivially true since they involve in complex coordinates a contraction of
tensors of type (1,1) with tensors of type (2,0) or (0,2). It is not clear whether minimal surface
property reducing to holomorphy is equivalent with preferred extremal property.

Can one have the basic field patterns such as multipoles as structures with 4-D M4 projection
or could it be that flux tube picture based on spherical harmonics for the orientation of flux tube
is all that one can have? Same question can be made for radiation fields having MEs as archetypal
representatives in TGD framework. What about the possible consistency problems produced by
M4 Kähler form breaking Lorentz invariance?

I have considered these questions already earlier. The following approach is just making ques-
tions and guesses possibly helping to develop general ideas about the correspondence.

1. In QFT approach one expresses fields as superpositions of partial waves, which are indeed very
simple field patterns and the coefficients in the superposition become oscillator operators.
What could be the analogs of partial waves in TGD? Simultaneous extremals of Kähler action
and volume strongly suggest themselves as carriers of field archetypes but the non-linearity
of field equations does not support the idea that partial waves could be realized at classical
level as extremals with 4-D M4 projection. A more plausible option is that they correspond
to spherical harmonics for the orientation of flux tube carrying say electric flux. Could the
flux tubes of various kinds serve as building of all classical fields?

2. String-like objects X2×Y 2 ⊂M4×CP2, where string world sheet X2 is minimal surface and
Y 2 is sub-manifold of CP2 and their deformations in M4 degrees of freedom transversal to
X2 and depending on the coordinates Y 2 are certainly good candidates for archetypal field
configurations.

Y 2 can be homologically trivial and could correspond to Lagrangian sub-manifold. Y 2 can
also carry homology charge n identifiable as Kähler magnetic charge and correspond to
complex sub-manifold of CP2 with complex structure induced from that of CP2.

The simplest option corresponds to geodesic sphere Y 2 = S2. There are two geodesic spheres
in CP2 and they correspond to simplest string like objects.

1. S2
I has Kähler magnetic charge of one unit and the cosmic and its deformations carry

monopole flux. These field configurations are not possible in Maxwell’s electrodynamics
and the proposal is that they appear in all length scales. The model for the formation of
galaxies solving also the problem of galactic dark matter relies on long cosmic strings. They
are proposed to appear also in biology.

2. S2
II is homologically trivial so that magnetic flux over it vanishes although magnetic field is

non-vanishing. Note that although the Kähler magnetic field is vanishing, the electromagnetic
ordinary magnetic field is non-vanishing because em field is a combination of Kähler form and
component of CP2 curvature form with vanishing weak isospin. The total flux of ordinary
magnetic field over S2

II vanishes whereas electric flux can be non-vanishing.

7.4.1 Coulomb fields

By the vanishing of magnetic flux flux tubes for S2
II cannot represent ordinary magnetic field.

They can however serve as radial flux tubes carrying electromagnetic flux. Magnetic flux tubes
indeed allow time dependent deformations for which the phase angles of CP2 coordinates depend
linearly of M4 time coordinate. This would give rise to an archetypal flux tube representation of
the electric field created by point charge. Also gravitational flux tubes should correspond to this
kind flux tubes emanating radially from the source.

Charge quantization suggests that these flux tubes carry unit charge. In the case of charged
elementary particle there would be only single flux tubes but there would be wave function for
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its orientation having no angular dependence. In principle, this wave function can any spherical
harmonic.

Does the orientation angle dependence of flux distribution have any counterpart in Maxwell’s
theory. One would have the analog of 1/r Coulomb potential with the modulus squared of spher-
ical harmonic Ylm modulating it. Could one consider the possibility that in atoms the spherical
harmonics for excited states correspond to this kind of distribution for the electric flux coming
from nucleus. The probability amplitude for electrons touching the flux tube would inherit this
distribution.

For many particle system with large em charge there would be large number of radial flux tubes
and the approximation of electric field with Coulomb field becomes natural. In the case of atoms
this limit is achieved for large enough nuclear charges. This does not exclude the possibility of
having space-time surfaces carrying Coulomb potential in Maxwellian sense: in this case however
the field equations cannot solved by holomorphy and quantum criticality might exclude these
configurations.

What about gravitation? The notion of gravitational Planck constant requires that Planck mass
replaced in TGD framework by CP2 mass defining the unit of gravitational flux - hgr0GMm/v0
cannot be smaller than h0. What happens in systems possessing mass smaller than CP2 mass?
Are gravitational flux tubes absent. Is gravitational interaction absent in this kind of systems or
is its description analogous to string model description meaning that hgr = h0 for masses smaller
than CP2 mass?

7.4.2 Magnetic fields

As such S2
II flux tubes cannot serve as counterparts of ordinary magnetic fields. The flux tubes

have now boundary and the current at boundary creates the magnetic field inside the tube. This
would mean cutting of a disk D2 from S2

II so that the net magnetic flux becomes non-vanishing.
The assumption has been that genuine boundaries are not possible since conservation laws very

probably prevent them (the normal components of canonical momentum currents should vanish
at boundaries but this is not possible). This requires that this flux tube must be glued along the
boundary of D2 × D1 to surrounding space-time surface X4, which has a similar hole. At the
boundary of this hole the space-time surface must turn to the direction of CP2 meaning that the
dimension of M4 projection is reduced to D = 2. Algebraic geometer would talk about blow-up.

Ordinary multipole magnetic field could correspond to spherical harmonic for the orientation
of this kind flux tubes. They could also carry electric flux but the em charge could be fractionized.
These flux tubes might relate to anyons carrying fractional em charge. Also the fractional charges
of quarks could classically correspond to flux tubes mediating both color magnetic field and em
flux. The spherical harmonic in question corresponds to that associated with electron in atoms.

7.4.3 Magnetic and electric fields associated with straight current wire

Magnetic and electric fields associated with straight current wire need not allow representation as
archetypes since they are obviously macroscopic entities.

1. Is the magnetic field associated with straight current wire representable in terms of extremal
with 4-D M4 projection. The magnetic field lines rotate around the current and it is does not
seem natural to model it the field in terms of flux tubes. Forget the presence of M4 Kähler
form. One can imbed this kind of magnetic field as a surface with 4-D M4 projection and
possessing cylindrical symmetry. Line current would correspond to a source of the magnetic
field and could be realized as a flux tube carrying em current and topologically condensed to
the space-time sheet in question.

The embedding however fails at certain critical radius and the assumption is that no bound-
aries are allowed by conservation laws. Should one glue the structure to the surrounding
space-time surface at this radius. In Maxwell’s theory one would have surface current in
direction opposite to the source cancelling the magnetic field outside. Could this current
have interpretation as a return current?

One can also imagine glueing its copy to it along the boundary at critical radius. It would
seem that the magnetic fields must have same direction at the boundary and therefore also
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in interior.

2. What about current ring? Separation of variables is essential for the simplest embeddings
implying a reduction of partial different equations to differential equation. There is rather
small number of coordinates system in E3 in which Laplacian allows separation of variables.
The metric is diagonal in these coordinates. One example is toroidal coordinates assignable
with a current ring having toroidal geometry. This would allow a construction of minimal
surface solution in some finite volume. Minimal surface property would not reduce to complex
analyticity for these extremals and they would be naturally associated M4 × S2

II .

Remark: This kind of extremals are not holomorphic and could be excluded by quantum
criticality and preferred extremal property. GRT space-time would be idealization making sense
only at the QFT limit of TGD.

7.4.4 Time dependent fields

What about time dependent fields such as the field created by oscillating dipole and radiation
fields? One can imagine quantal and classical option.

1. The simplest possibility is reduction to quantum description at single particle level. The
dipole current corresponds to a wave function for the source particle system consisting of
systems with opposite total charge.

Spherical harmonics representing multipoles would induce wave function for the orientations
of MEs (topological light ray) carrying radial wave. This is certainly the most natural options
as far radiation field at large distances from sources is considered. One can also have second
quantization in the proposed sense giving rise to multi-photon states and one can also define
coherent states.

One should also understand time dependent fields near sources having also non-radiative
part. This requires a model for source such as oscillating dipole. The simplest possibility is
that in the case of dipole there are charges of opposite sign with oscillating distance creating
Coulomb fields represented in the proposed manner. It is however not obvious that preferred
extremals of this kind exist.

2. One can consider also classical description. The model of elementary particle as consisting of
two wormhole contacts, whose throats effectively serve as end of monopole flux tubes at the
two sheets involved suggests a possible model. If the wormhole contacts carry opposite em
charges realized in terms of fermion and antifermions an oscillating dipole could correspond
to flux tube whose length oscillates. This means generation of radiation and for elementary
particles this would suggest instability against decay. One can however consider excitation
which decay to ground states - say for hadrons. For scaled up variants of this structure
this would not mean instability although energy is lost and the system must end up to
non-oscillating state.

One possibility is that there are two charges at different space-time sheets connected by
wormhole contacts and oscillating by their mutual interaction in harmonic oscillator state.
Ground state would be stable and have not dipole moment.

7.4.5 Effectively 2-D systems

In classical electrodynamics effectively 2-D systems are very special in that they allow conformal
invariance assignable to 2-D Laplacian.

1. Since minimal surface equation is generalization of massless d’Alambertian and since field
equations are trivially true for analytic solutions, one can hope that the basic solutions of
4-D d’Alembertian generalize in TGD framework. This would conform with the universality
of quantum criticality meaning that coupling parameters disappear from field equations.
Conformal invariance or its generalization would mean huge variety of field patterns. This
suggests that effectively 2-D systems serve as basic building bricks of more complex field
configurations. Flux tubes of various kinds would represent basic examples of this kind of
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surfaces. Also the magnetic end electric fields associated with straight current wire would
serve as an example.

2. Are there preferred extremals analogous to the solutions of field equations of general relativity
in faraway regions, where they become simple and might allow an analog in TGD framework?
If our mathematical models reflect the preferred extremals as archetypal structures, this could
be the case.

Forget for a moment the technicalities related to M4 Kähler form. One can construct a
spherically symmetric ansatz in M4×S2

II as a minimal surface for which Φ depends linearly
on time t and u is function of r. The ansatz reduces to a highly non-linear differential
equation for u. In this case hyper-complex analyticity is obviously not satisfied. This ansatz
could give the analog of Schwartschild metric giving also the electric field of point charge
appearing as source of the non-linear variant of d’Alembertian. It is however far from clear
whether this kind extremals is allowed as preferred extremals.

Under which conditions spherically symmetric ansatz is consistent with M4 Kähler form?
Obviously, the M4 Kähler form must be spherically symmetric as also the Hamilton-Jacobi
structure it. Suppose local Hamilton-Jacobi structures for which M2s integrate to t, r co-
ordinate planes and E2s integrate to (θ, φ) sphere are allowed and that M4 Kähler form
defines this decomposition. In this case there are hopes that consistency conditions can be
satisfied. Note however that M4 Kähler form defines in this case orthogonal magnetic and
electric monopole fields defining an analog of instanton. Can one really allow this or should
one exclude the time line with r = 0?

Similar M4 Kähler structure can be associated with cylindrical coordinates and other sepa-
rable coordinates system. M4 Kähler structure would define Hamilton-Jacobi structure.

8 Minimal surfaces and TGD

The twistor lift of TGD [K30, K26, L6] meant a revolution in the understanding of TGD and led
to a new view about what preferred extremal property means physically and why it is needed.

1. The construction of twistor lift of TGD replaces space-time surfaces with 6-D surfaces but
requires that they are dynamically effectively 4-D as the analogs of twistor space having
the structure of S2 bundle with space-time surface as the base. This requires dimensional
reduction making S2 fiber of the twistor space non-dynamical.

One can say that twistor structure is induced from that for 12-D product of the geometric
6-D twistor spaces of M4 and CP2. The condition that 6-D Kähler action exists requires
that the twistor spaces of M4 and CP2 have Kähler structure. This condition allows only
H = M4 × CP2 [A12]. The condition that one obtains standard model symmetries leads to
the same conclusion.

2. The dimensionally reduced Kähler action decomposes to a sum of 4-D Kähler action and
volume term. The interaction is as analog of Maxwell action plus action of point-like particle
replaced with 3-D surface. The coefficient of the volume term has an interpretation as cos-
mological constant having a discrete spectrum [L8]. The natural proposal it that it depends
on p-adic length scale approaching zero in long length scales. This solves the cosmological
constant problem.

3. I had actually known for decades that all non-vacuum extremals of 4-D Kähler action are
minimal surfaces thus minimizing the space-time volume in the induced metric. This is
because the field equations for Kähler action for known non-vacuum extremals were reduced
essentially to algebraic conditions realizing holomorphy. Also so called CP2 type vacuum
extremals of 4-D Kähler action are minimal surfaces. This finding conforms with the fact
that in M8 −H duality [?] one has regard field equations as purely algebraic conditions at
M8 side of the duality.

This inspired the proposal that preferred extremal property of space-time surface is realized
by requiring that space-time surfaces as base spaces of these 6-D twistor spaces are quite
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generally minimal surfaces, and therefore represent a non-linear geometrization for the notion
of massless field in accordance with conformal invariance forced by quantum criticality.

Also a more general proposal that space-time contains regions inside which there is an
exchange of canonical momenta between Kähler action and volume term was considered.
Minimal surface regions would correspond to incoming particles and non-minimal ones to
interaction regions.

Later this proposal was simplified by requiring that interaction regions are 2-D string world
sheets as singularities: this implied that string world sheets required by general considerations
[K34] indeed emerge from 4-D action. This could happen also at the 1-D boundaries of
string world sheets at 3-D light-like boundaries between Minkowskian and Euclidian regions
behaving like ordinary point-like particles and carrying fermion number, and in the most
general case also at these 3-D light-like 3-surfaces.

8.1 Space-time surfaces as singular minimal surfaces

From the physics point this is not surprising since minimal surface equations are the geometric
analog for massless field equations.

1. The boundary value problem in TGD is analogous to that defining soap films spanned by
frames: space-time surface is thus like a 4-D soap film. Space-time surface has 3-D ends at
the opposite boundaries of causal diamond of M4 with points replaced with CP2: I call this
8-D object just causal diamond (CD). Geometrically CD brings in mind big-bang followed
by big crunch.

These 3-D ends are like the frame of a soap film. This and the Minkowskian signature
guarantees the existence of minimal surface extremals. Otherwise one would expect that the
non-compactness does not allow minimal surfaces as non-self-intersecting surfaces.

2. Space-time is a 4-surface in 8-D H = M4×CP2 and is a minimal surface, which can have 2-D
or 1-D singularities identifiable as string world sheets having 1-D singularities as light-like
orbits - they could be geodesics of space-time surface.

Remark: I considered in [L3] the possibility that the minimal surface property could fail
only at the reaction vertices associated with partonic 2-surfaces defining the ends of string
world sheet boundaries. This condition however seems to be too strong. It is essential that
the singular surface defines a sub-manifold giving deltafunction like contribution to the action
density and that one can assign conserved quantities to this surface. This requires that the
singular contributions to energy momentum tensor and canonical momentum currents as
spacetime vectors are parallel to the singular surface. Singular points do not satisfy this
condition.

String boundaries represent orbits of fundamental point-like fermions located at 3-D light-like
surfaces which represent orbits of partonic 2-surfaces. String world sheets are minimal sur-
faces and correspond to stringy objects associated with say hadrons. There are also degrees
of freedom associated with space-time interior. One have objects of various dimension which
all are minimal surfaces. Modified Dirac equation extends the field equations to supersym-
metric system and assigns fermionic degrees of freedom to these minimal surfaces of varying
dimension.

From the physics point of view, the singular surfaces are analogous to carriers of currents
acting as point- and string-like sources of massless field equations.

3. Geometrically string world sheets are analogous to folds of paper sheet. Space-time surfaces
are extremals of an action which is sum of volume term having interpretation in terms of
cosmological constant and what I call Kähler action - analogous to Maxwell action. Outside
singularities one has minimal surfaces stationary with respect to variations of both volume
term and Kähler action - note the analogy with free massless field. At singularities there is an
exchange of conserved quantities between volume and Kähler degrees of freedom analogous
to the interaction of charged particle with electromagnetic field. One can see TGD as a
generalization of a dynamics of point-like particle coupled to Maxwell field by making particle
3-D surface.
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4. The condition that the exchange of conserved charges such as four-momentum is restricted
to lower-D surfaces realizes preferred extremal property as a consequence of quantum crit-
icality demanding a universal dynamics independent of coupling parameters [L8]. Indeed,
outside the singularities the minimal surfaces dynamics has no explicit dependence on cou-
pling constants provided local minimal surface property guarantees also the local stationarity
of Kähler action.

Preferred extremal property has also other formulations. What is essential is the generaliza-
tion of super-conformal symmetry playing key role in super string models and in the theory
of 2-D critical systems so that field equations reduce to purely algebraic conditions just like
for analytic functions in 2-D space providing solutions of Laplace equations.

5. TGD provides a large number of specific examples about closed minimal surfaces [K4]. Cos-
mic strings are objects, which are Cartesian products of minimal surfaces (string world sheets)
in M4 and of complex algebraic curves (2-D surfaces). Both are minimal surfaces and ex-
tremize also Kähler action. These algebraic surfaces are non-contractible and characterized
by homology charge having interpretation as Kähler magnetic charge. These surfaces are
genuine minima just like the geodesics at torus.

CP2 contains two kinds of geodesic spheres, which are trivially minimal surfaces. The reason
is that the second fundamental form defining as its trace the analogs of external curvatures
in the normal space of the surfaces vanishes identically. The geodesic sphere of the first kind
is non-contractible minimal surface and absolute minimum. Geodesic spheres of second kind
is contractible and one has Minimax type situation.

These geodesic spheres are analogous to 2-planes in flat 3-space with vanishing external cur-
vatures. For a generic minimal surface in 3-space the principal curvatures are non-vanishing
and sum up to zero. This implies that minimal surfaces look locally like saddles. For 2-plane
the curvatures vanish identically so that saddle is not formed.

8.2 Kähler action as Morse function in the space of minimal 4-surfaces

It was found that surface volume could define a Morse function in the space of surfaces. What
about the situation in TGD, where volume is replaced with action which is sum of volume term
and Kähler action [L6, L4, L8]?

Morse function interpretation could appear in two ways. The first possibility is that the action
defines an analog of Morse function in the space of 4-surfaces connecting given 3-surfaces at the
boundaries of CD. Could it be that there is large number of preferred extremals connecting given 3-
surfaces at the boundaries of CD? This would serve as analogy for the existence of infinite number
of closed surfaces in the case of compact embedding space. The fact that preferred extremals
extremize almost everywhere two different actions suggests that this is not the case but one must
consider also this option.

1. The simplest realization of general coordinate invariance would allow only single preferred
extremal but I have considered also the option for which one has several preferred extremals.
In this case one encounters problem with the definition of Kähler function which would
become many-valued unless one is ready to replace 3-surfaces with its covering so that each
preferred extremal associated with the given 3-surface gives rise to its own 3-surface in the
covering space. Note that analogy with the definition of covering space of say circle by
replacing points with the set of homologically equivalence classes of closed paths at given
point (rotating arbitrary number of times around circle).

2. Number theoretic vision [K33, K14] suggests that these possibly existing different preferred
extremals are analogous to same algebraic computation but performed in different ways or
theorem proved in different ways. There is always the shortest manner to do the computation
and an attractive idea is that the physical predictions of TGD do not depend on what
preferred extremal is chosen.

3. An interesting question is whether the “drum theorem” could generalize to TGD framework.
If there exists infinite series of preferred extremals which are singular minimal surfaces, the
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volume of space-time surface for surfaces in the series would depend only on the volume
of the CD containing it. The analogy with the high frequencies and drum suggests that
the surfaces in the series have more and more local details. In number theoretic vision this
would correspond to emergence of more and more un-necessary pieces to the computation.
One cannot exclude the possibility that these details are analogs for what is called loop
corrections in quantum field theory.

4. If the action defines Morse action, the preferred extremals give information about its topol-
ogy. Note however that the requirement that one has extremum of both volume term and
Kähler action almost everywhere is an extremely strong additional condition and corresponds
physically to quantum criticality.

Remark: The original assumption was that the space-time surface decomposes to critical
regions which are minimal surfaces locally and to non-critical regions inside which there is
flow of canonical momentum currents between volume and Kähler degrees of freedom. The
stronger hypothesis is that this flow occurs at 2-D and 1-D surfaces only.

8.3 Kähler function as Morse function in the space of 3-surfaces

The notion of Morse function can make sense also in the space of 3-surfaces - the world of classical
worlds which in zero energy ontology consists of pairs of 3-surfaces at opposite boundaries of
CD connected by preferred extremal of Kähler action [K12, K25, L6, L4]. Kähler action for the
preferred extremal is assumed to define Kähler function defining Kähler metric of WCW via its
second derivates ∂K∂LK. Could Kähler function define a Morse function?

1. First of all, Morse function must be a genuine function. For general Kähler metric this is
not the case. Rather, Kähler function K is a section in a U(1) bundle consisting of patches
transforming by real part of a complex gradient as one moves between the patches of the
bundle. A good example is CP2, which has non-trivial topology, and which decomposes to
3 coordinate patches such that Kähler functions in overlapping patches are related bythe
analog of U(1) gauge transformation.

Kähler action for preferred extremal associated with given 3-surface is however uniquely
defined unless one includes Chern-Simons term which changes in U(1) gauge transformation
for Kähler gauge potential of CP2.

2. What could one conclude about the topology of WCW if the action for preferred extremal
defines a Morse function as a functional of 3-surface? This function cannot have saddle
points: in a region of WCW around saddle point the WCW metric depending on the second
derivatives of Morse function would not be positive definite, and this is excluded by the pos-
itivity of Hilbert space inner product defined by the Kähler metric essential for the unitarity
of the theory. This would suggest that the space of 3-surfaces has very simple topology if
Kähler function.

This is too hasty conclusion! WCW metric is expected to depend also on zero modes, which
do not contribute to the WCW line element. What suggests itself is bundle structure. Zero
modes define the base space and dynamical degrees of freedom contributing to WCW line
element as fiber. The space of zero modes can be topologically complex.

There is a fascinating open problem related to the metric of WCW.

1. The conjecture is that WCW metric possess the symplectic symmetries of ∆M4
+ × CP2 as

isometries. In infinite dimensional case the existence of Riemann/Kähler geometry is not at
all obvious as the work of Dan Freed demonstrated in the case of loops spaces [A11], and
the maximal group of isometries would guarantee the existence of WCW Kähler geometry.
Geometry would be determined by symmetries alone and all points of the space would be
metrically equivalent. WCW would be an infinite-dimensional analog of symmetric space.

2. Isometry group property does not require that symplectic symmetries leave Kähler action,
and even less volume term for preferred extremal, invariant. Just the opposite: if the action
would remain invariant, Kähler function and Kähler metric would be trivial!
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3. The condition for the existence of symplectic isometries must fix the ratio of the coefficients
of Kähler action and volume term highly uniquely. The physical interpretation is in terms
of quantum criticality realized mathematically in terms of the symplectic symmetry serving
as analog of ordinary conformal symmetry characterizing 2-D critical systems. Note that at
classical level quantum criticality realized as minimal surface property says nothing outside
singular surfaces since the field equations in this regions are algebraic. At singularities the
situation changes. Note also that the minimal surface property is a geometric analog of
masslessness which in turn is a correlate of criticality.

4. Twistor lift of TGD [?]eads to a proposal for the spectra of Kähler coupling strength and
cosmological constant allowed by quantum criticality [L4]. What is surprising that cosmolog-
ical constant identified as the coefficient of the volume term takes the role of cutoff mass in
coupling constant evolution in TGD framework. Coupling constant evolution discretizes in
accordance with quantum criticality which must give rise to infinite-D group of WCW isome-
tries. There is also a connection with number theoretic vision in which coupling constant
evolution has interpretation in terms of extensions of rationals [K33, K2, ?].

8.4 Kähler calibrations: an idea before its time?

While updating book introductions I was surprised to find that I had talked about so called
calibrations of sub-manifolds as something potentially important for TGD and later forgotten the
whole idea! A closer examination however demonstrated that I had ended up with the analog
of this notion completely independently later as the idea that preferred extremals are minimal
surfaces apart form 2-D singular surfaces, where there would be exchange of Noether charges
between Kähler and volume degrees of freedom.

1. The original idea that I forgot too soon was that the notion of calibration (see http:

//tinyurl.com/y3lyead3) generalizes and could be relevant for TGD. A calibration in Rie-
mann manifold M means the existence of a k-form φ in M such that for any orientable k-D
sub-manifold the integral of φ over M equals to its k-volume in the induced metric. One can
say that metric k-volume reduces to homological k-volume.

Calibrated k-manifolds are minimal surfaces in their homology class, in other words their
volume is minimal. Kähler calibration is induced by the kth power of Kähler form and
defines calibrated sub-manifold of real dimension 2k. Calibrated sub-manifolds are in this
case precisely the complex sub-manifolds. In the case of CP2 they would be complex curves
(2-surfaces) as has become clear.

2. By the Minkowskian signature of M4 metric, the generalization of calibrated sub-manifold
so that it would apply in M4 × CP2 is non-trivial. Twistor lift of TGD however forces to
introduce the generalization of Kähler form in M4 (responsible for CP breaking and matter
antimatter asymmetry) and calibrated manifolds in this case would be naturally analogs of
string world sheets and partonic 2-surfaces as minimal surfaces. Cosmic strings are Cartesian
products of string world sheets and complex curves of CP2. Calibrated manifolds, which do
not reduce to Cartesian products of string world sheets and complex surfaces of CP2 should
also exist and are minimal surfaces.

One can also have 2-D calibrated surfaces and they could correspond to string world sheets
and partonic 2-surfaces which also play key role in TGD. Even discrete points assignable to
partonic 2-surfaces and representing fundamental fermions play a key role and would trivially
correspond to calibrated surfaces.

3. Much later I ended up with the identification of preferred extremals as minimal surfaces by
totally different route without realizing the possible connection with the generalized calibra-
tions. Twistor lift and the notion of quantum criticality led to the proposal that preferred
extremals for the twistor lift of Kähler action containing also volume term are minimal sur-
faces. Preferred extremals would be separately minimal surfaces and extrema of Kähler action
and generalization of complex structure to what I called Hamilton-Jacobi structure would
be an essential element. Quantum criticality outside singular surfaces would be realized as

http://tinyurl.com/y3lyead3
http://tinyurl.com/y3lyead3
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decoupling of the two parts of the action. May be all preferred extremals be regarded as
calibrated in generalized sense.

If so, the dynamics of preferred extremals would define a homology theory in the sense that
each homology class would contain single preferred extremal. TGD would define a generalized
topological quantum field theory with conserved Noether charges (in particular rest energy)
serving as generalized topological invariants having extremum in the set of topologically
equivalent 3-surfaces.

It is interesting to recall that the original proposal for the preferred extremals as absolute
minima of Kähler action has transformed during years to a proposal that they are absolute
minima of volume action within given homology class and having fixed ends at the boundaries
of CD.

4. The experience with CP2 would suggest that the Kähler structure of M4 defining the coun-
terpart of form φ is unique. There is however infinite number of different closed self-dual
Kähler forms of M4 defining what I have called Hamilton-Jacobi structures. These forms can
have subgroups of Poincare group as symmetries. For instance, magnetic flux tubes corre-
spond to given cylindrically symmetry Kähler form. The problem disappears as one realizes
that Kähler structures characterize families of preferred extremals rather than M4 itself.

If the notion of calibration indeed generalizes, one ends up with the same outcome - preferred
extremals as minimal surfaces with 2-D string world sheets and partonic 2-surfaces as singularities
- from many different directions.

1. Quantum criticality requires that dynamics does not depend on coupling parameters so that
extremals must be separately extremals of both volume term and Kähler action and therefore
minimal surfaces for which these degrees of freedom decouple except at singular 2-surfaces,
where the necessary transfer of Noether charges between two degrees of freedom takes place
at these. One ends up with string picture but strings alone are of course not enough. For
instance, the dynamical string tension is determined by the dynamics for the twistor lift.

2. Almost topological QFT picture implies the same outcome: topological QFT property fails
only at the string world sheets.

3. Discrete coupling constant evolution, vanishing of loop corrections, and number theoretical
condition that scattering amplitudes make sense also in p-adic number fields, requires a
representation of scattering amplitudes as sum over resonances realized in terms of string
world sheets.

4. In the standard QFT picture about scattering incoming states are solutions of free massless
field equations and interaction regions the fields have currents as sources. This picture
is realized by the twistor lift of TGD in which the volume action corresponds to geodesic
length and Kähler action to Maxwell action and coupling corresponds to a transfer of Noether
charges between volume and Kähler degrees of freedom. Massless modes are represented by
minimal surfaces arriving inside causal diamond (CD) and minimal surface property fails in
the scattering region consisting of string world sheets.

5. Twistor lift forces M4 to have generalize Kähler form and this in turn strongly suggests a gen-
eralization of the notion of calibration. At physics side the implication is the understanding
of CP breaking and matter anti-matter asymmetry.

6. M8−H duality requires that the dynamics of space-time surfaces in H is equivalent with the
algebraic dynamics in M8. The effective reduction to almost topological dynamics implied
by the minimal surface property implies this. String world sheets (partonic 2-surfaces) in
H would be images of complex (co-complex sub-manifolds) of X4 ⊂ M8 in H. This should
allows to understand why the partial derivatives of embedding space coordinates can be
discontinuous at these edges/folds but there is no flow between interior and singular surface
implying that string world sheets are minimal surfaces (so that one has conformal invariance).

The analogy with foams in 3-D space deserves to be noticed.
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1. Foams can be modelled as 2-D minimal surfaces with edges meeting at vertices. TGD space-
time could be seen as a dynamically generated foam in 4-D many-sheeted space-time con-
sisting of 2-D minimal surfaces such that also the 4-D complement is a minimal surface. The
counterparts for vertices would be light-like curves at light like orbits of partonic 2-surfaces
from which several string world sheets can emanate.

2. Can one imagine something more analogous to the usual 3-D foam? Could the light-like orbits
of partonic 2-surfaces define an analog of ordinary foam? Could also partonic 2-surfaces have
edges consisting of 2-D minimal surfaces joined along edges representing strings connecting
fermions inside partonic 2-surface?

For years ago I proposed what I called as symplectic QFT (SQFT) as an analog of conformal
QFT and as part of quantum TGD [K9]. SQFT would have symplectic transformations as
symmetries, and provide a description for the symplectic dynamics of partonic 2-surfaces.
SQFT involves an analog of triangulation at partonic 2-surfaces and Kähler magnetic fluxes
associated with them serve as observables. The problem was how to fix this kind of network.
Partonic foam could serve as a concrete physical realization for the symplectic network and
have fundamental fermions at vertices. The edges at partonic 2-surfaces would be space-like
geodesics. The outcome would be a calibration involving objects of all dimensions 0 ≤ D ≤ 4
- a physical analog of homology theory.

9 Are space-time boundaries possible in the TGD frame-
work?

One of the key ideas of TGD from the very beginning was that the space-time surface has boundaries
and we see them directly as boundaries of physical objects.

It however turned out that it is not at all clear whether the boundary conditions stating that no
isometry currents flow out of the boundary, can be satisfied. Therefore the cautious conclusion was
that perhaps the boundaries are only apparent. For instance, the space-time regions correspond to
maps M4 → CP2, which are many-valued and have as turning points, which have 3-D projections
to M4. The boundary surfaces between regions with Minkowskian and Euclidean signatures of
the induced metric seem to be unavoidable, at least those assignable to deformations of CP2 type
extremals assignable to wormhole contacts.

There are good reasons to expect that the possible boundaries are light-like and possibly also
satisfy the det(g4) = 0 condition and I have considered the boundary conditions but have not been
able to make definite conclusions about how they could be realized.

1. The action principle defining space-times as 4-surfaces in H = M4 × CP2 as preferred ex-
tremals contains a 4-D volume term and the Kähler action plus possible boundary term if
boundaries are possible at all. This action would give rise to a boundary term representing
a normal flow of isometry currents through the boundary. These currents should vanish.

2. There could also be a 3-D boundary part in the action but if the boundary is light-like,
it cannot depend on the induced metric. The Chern-Simons term for the Kähler action is
the natural choice. Twistor lift suggests that it is present also in M4 degrees of freedom.
Topological field theories utilizing Chern-Simons type actions are standard in condensed
matter physics, in particular in the description of anyonic systems, so that the proposal
is not so radical as one might think. One might even argue that in anyonic systems, the
fundamental dynamics of the space-time surface is not masked by the information loss caused
by the approximations leading to the field theory limit of TGD.

Boundary conditions would state that the normal components of the isometry currents are
equal to the divergences of Chern-Simons currents and in this way guarantee conservation
laws. In CP2 degrees of freedom the conditions would be for color currents and in M4 degrees
of freedom for 4-momentum currents.

3. This picture would conform with the general view of TGD. In zero energy ontology (ZEO)
[L9, L13] phase transitions would be induced by macroscopic quantum jumps at the level of
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the magnetic body (MB) of the system. In ZEO, they would have as geometric correlates
classical deterministic time evolutions of space-time surface leading from the initial to the
final state [L7]. The findings of Minev et al provide [L7] lend support for this picture.

9.1 Light-like 3-surfaces from det(g4) = 0 condition

How the light-like 3- surfaces could be realized?

1. A very general condition considered already earlier is the condition det(g4) = 0 at the light-
like 4-surface. This condition means that the tangent space of X4 becomes metrically 3-D
and the tangent space of X3 becomes metrically 2-D. In the local light-like coordinates,
(u, v,W,W ) guv = gvu) would vanish (guu and gvv vanish by definition.

Could det(g4) = 0 and det(g3) = 0 condition implied by it allow a universal solution of the
boundary conditions? Could the vanishing of these dimensional quantities be enough for the
extended conformal invariance?

2. 3-surfaces with det(g4) = 0 could represent boundaries between space-time regions with
Minkowskian and Euclidean signatures or genuine boundaries of Minkowskian regions.

A highly attractive option is that what we identify the boundaries of physical objects are
indeed genuine space-time boundaries so that we would directly see the space-time topology.
This was the original vision. Later I became cautious with this interpretation since it seemed
difficult to realize, or rather to understand, the boundary conditions.

The proposal that the outer boundaries of different phases and even molecules make sense
and correspond to 3-D membrane like entities [L15], served as a partial inspiration for this
article but this proposal is not equivalent with the proposal that light-like boundaries defining
genuine space-time boundaries can carry isometry charges and fermions.

3. How does this relate to M8 −H duality [L10, L11]? At the level of rational polynomials P
determined 4-surfaces at the level of M8 as their ”roots” and the roots are mass shells. The
points of M4 have interpretation as momenta and would have values, which are algebraic
integers in the extension of rationals defined by P .

Nothing prevents from posing the additional condition that the region of H3 ⊂ M4 ⊂ M8

is finite and has a boundary. For instance, fundamental regions of tessellations defining
hyperbolic manifolds (one of them appears in the model of the genetic code [L12]) could be
considered. M8 − H duality would give rise to holography associating to these 3-surfaces
space-time surfaces in H as minimal surfaces with singularities as 4-D analogies to soap films
with frames.

The generalization of the Fermi torus and its boundary (usually called Fermi sphere) as the
counterpart of unit cell for a condensed matter cubic lattice to a fundamental region of a
tessellation of hyperbolic space H3 acting is discussed is discussed in [L16]. The number of
tessellations is infinite and the properties of the hyperbolic manifolds of the ”unit cells” are
fascinating. For instance, their volumes define topological invariants and hyperbolic volumes
for knot complements serve as knot invariants.

This picture resonates with an old guiding vision about TGD as an almost topological quantum
field theory (QFT) [K16, K4, K35], which I have even regarded as a third strand in the 3-braid
formed by the basic ideas of TGD based on geometry-number theory-topology trinity.

1. Kähler Chern-Simons form, also identifiable as a boundary term to which the instanton
density of Kähler form reduces, defines an analog of topological QFT.

2. In the recent case the metric is however present via boundary conditions and in the dynamics
in the interior of the space-time surface. However, the preferred extremal property essential
for geometry-number theory duality transforms geometric invariants to topological invariants.
Minimal surface property means that the dynamics of volume and Kähler action decouple
outside the singularities, where minimal surface property fails. Coupling constants are present
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in the dynamics only at these lower-D singularities defining the analogs of frames of a 4-D
soap film.

Singularities also include string worlds sheets and partonic 2-surfaces. Partonic two-surfaces
play the role of topological vertices and string world sheets couple partonic 2-orbits to a
network. It is indeed known that the volume of a minimal surface can be regarded as a
homological invariant.

3. If the 3-surfaces assignable to the mass shells H3 define unit cells of hyperbolic tessellations
and therefore hyperbolic manifolds, they also define topological invariants. Whether also
string world sheets could define topological invariants is an interesting question.

9.2 Can one allow macroscopic Euclidean space-time regions

Euclidean space-time regions are not allowed in General Relativity. Can one allow them in TGD?

1. CP2 extremals with a Euclidean induced metric and serving as correlates of elementary
particles are basic pieces of TGD vision. The quantum numbers of fundamental fermions
would reside at the light-like orbit of 2-D wormhole throat forming a boundary between
Minkowskian space-time sheet and Euclidean wormhole contact- parton as I have called it.
More precisely, fermionic quantum numbers would flow at the 1-D ends of 2-D string world
sheets connecting the orbits of partonic 2-surfaces. The signature of the 4-metric would
change at it.

2. It is difficult to invent any mathematical reason for excluding even macroscopic surfaces with
Euclidean signature or even deformations of CP2 type extremals with a macroscopic size.
The simplest deformation of Minkowski space is to a flat Euclidean space as a warping of the
canonical embedding M4 ⊂M4 × S1 changing its signature.

3. I have wondered whether space-time sheets with an Euclidean signature could give rise to
black-hole like entities. One possibility is that the TGD variants of blackhole-like objects
have a space-time sheet which has, besides the counterpart of the ordinary horizon, an
additional inner horizon at which the signature changes to the Euclidean one. This could
take place already at Schwarzschild radius if grr component of the metric does not change
its sign.

9.3 But are the normal components of isometry currents finite?

Whether this scenario works depends on whether the normal components for the isometry currents
are finite.

1. det(g4) = 0 condition gives boundaries of Euclidean and Minkowskian regions as 3-D light-
like minimal surfaces. There would be no scales in accordance with generalized conformal
invariance. guv in light-cone coordinates for M2 vanishes and implies the vanishing of det(g4)
and light-likeness of the 3-surface.

What is important is that the formation of these regions would be unavoidable and they
would be stable against perturbations.

2. guv
√
|g4| is finite if det(g4) = 0 condition is satisfied, otherwise it diverges. The terms

gui∂ih
k
√
|g4| must be finite. gui = cof(giu)/det(g4) is finite since guvgvu in the cofactor

cancels it from the determinant in the expression of gui. The presence of
√
|g4| implies that

the these contributions to the boundary conditions vanish. Therefore only the condition
boundary condition for guv remains.

3. If also Kähler action is present, the conditions are modified by replacing Tuk = guα∂αh
k
√
|g4|

with a more general expression containing also the contribution of Kähler action. I have
discussed the details of the variational problem in [K6, K4].

The Kähler contribution involves the analogy of Maxwell’s energy momentum tensor, which
comes from the variation of the induced metric and involves sum of terms proportional to
JαµJ

beta
µ and gαβJµνJµν .
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In the first term, the dangerous index raisings by guv appear 3 times. The most dangerous
term is given by JuvJvv

√
|g| = guµgvνJαβg

vuJvu
√
|g|. The divergent part is guvgvuJuvg

vuJvu
√
|g|.

The diverging guv appears 3 times and Juv = 0 condition eliminates two of these. gvu
√
|g|

is finite by
√
|g| = 0 condition. Juv = 0 guarantees also the finiteness of the most dangerous

part in gαβJµνJµν
√
|g|.

There is also an additional term coming from the variation of the induced Kähler form.
This to the normal component of the isometry current is proportional to the quantity
JnαJkl ∂βh

l
√
|g|. Also now, the most singular term in Juβ = guµgβνJµν corresponds to

Juv giving guvgvuJuv
√
|g|. This term is finite by Juv = 0 condition.

Therefore the boundary conditions are well-defined but only because det(g4) = 0 condition
is assumed.

4. Twistor lift strongly suggests that the assignment of the analogy of Kähler action also to M4

and also this would contribute. All terms are finite if det(g4) = 0 condition is satisfied.

5. The isometry currents in the normal direction must be equal to the divergences of the cor-
responding currents assignable to the Chern-Simons action at the boundary so that the flow
of isometry charges to the boundary would go to the Chern-Simons isometry charges at the
boundary.

If the Chern-Simons term is absent, one expects that the boundary condition reduces to
∂vh

k = 0. This would make X3 2-dimensional so that Chern-Simons term is necessary. Note
that light-likeness does not force the M4 projection to be light-like so that the expansion of
X2 need not take with light-velocity. If CP2 complex coordinates are holomorphic functions
of W depending also on U = v as a parameter, extended conformal invariance is obtained.

9.4 det(g4) = 0 condition as a realization of quantum criticality

Quantum criticality is the basic dynamical principle of quantum TGD. What led to its discovery
was the question ”How to make TGD unique?”. TGD has a single coupling constant, Kähler
couplings strength, which is analogous to a critical temperature. The idea was obvious: require
quantum criticality. This predicts a spectrum of critical values for the Kähler coupling strength.
Quantum criticality would make the TGD Universe maximally complex. Concerning living matter,
quantum critical dynamics is ideal since it makes the system maximally sensitive and maximallt
reactive.

Concerning the realization of quantum criticality, it became gradually clear that the conformal
invariance accompanying 2-D criticality, must be generalized. This led to the proposal that
super symplectic symmetries, extended isometries and conformal symmetries of the metrically 2-D
boundary of lightcone of M4, and the extension of the Kac-Moody symmetries associated with the
light-like boundaries of deformed CP2 type extremals should act as symmetries of TGD extending
the conformal symmetries of 2-D conformal symmetries. These huge infinite-D symmetries are also
required by the existence of the Kähler geometry of WCW [K16, K12, K25] [L14, L18].

However, the question whether light-like boundaries of 3-surfaces with scale larger than CP2

are possible, remained an open question. On the basis of preceding arguments, the answer seems
to be affirmative and one can ask for the implications.

1. At M8 level, the concrete realization of holography would involve two ingredients. The
intersections of the space-time surface with the mass shells H3 with mass squared value
determined as the roots of polynomials P and the tlight-like 3-surfaces as det(g4) = 0
surfaces as boundaries (genuine or between Minkowskian and Euclidean regions) associated
by M8 − H duality to 4-surface of M8 having associative normal space, which contains
commutative 2-D subspace at each point. This would make possible both holography and
M8 −H duality.

Note that the identification of the algebraic geometric characteristics of the counterpart of
det(g4) = 0 surface at the level of H remains still open.

Since holography determines the dynamics in the interior of the space-time surface from the
boundary conditions, the classical dynamics can be said to be critical also in the interior.
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2. Quantum criticality means ability to self-organize. Number theoretical evolution allows us
to identify evolution as an increase of the algebraic complexity. The increase of the degree n
of polynomial P serves as a measure for this. n = heff/h0 also serves as a measure for the
scale of quantum coherence, and dark matter as phases of matter would be characterized by
the value of n.

3. The 3-D boundaries would be places where quantum criticality prevails. Therefore they
would be ideal seats for the development of life. The proposal that the phase boundaries
between water and ice serve as seats for the evolution of prebiotic life, is discussed from
the point of TGD based view of quantum gravitation involving huge value of gravitational
Planck constant ~eff = ~gr = GMm/v0 making possible quantum coherence in astrophysical
scales [L17]. Density fluctuations would play an essential role, and this would mean that the
volume enclosed by the 2-D M4 projection of the space-time boundary would fluctuate. Note
that these fluctuations are possible also at the level of the field body and magnetic body.

4. It has been said that boundaries, where the nervous system is located, distinguishes living
systems from inanimate ones. One might even say that holography based on det(g4) = 0
condition realizes nervous systems in a universal manner.

5. I have considered several variants for the holography in the TGD framework, in particular
strong form of holography (SH). SH would mean that either the light-like 3-surfaces or the
3-surfaces at the ends of the causal diamond (CD) determine the space-time surface so that
the 2-D intersections of the 3-D ends of the space-time surface with its light-like boundaries
would determine the physics.

This condition is perhaps too strong but a fascinating, weaker, possibility is that the inter-
nal consistency requires that the intersections of the 3-surface with the mass shells H3 are
identifiable as fundamental domains for the coset spaces SO(1, 3)/Γ defining tessellations
of H3 and hyperbolic manifolds. This would conform nicely with the TGD inspired model
of genetic code [L12].
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